
CSIS 3103 Fall 2010

ds05-3 1

CSIS 3103

Ch 5:
Applications of Recursion

Counting Cells in a Blob

• Process an image presented as a two-
dimensional array of color values

• Information in the image may come from
– an X-ray
– an MRI
– satellite imagery
– etc.

• The goal is to determine the size of any area
in the image that is considered abnormal
because of its color values

Counting Cells in a Blob

• Each cell in a two-dimensional grid
contains either a normal background color
or a second abnormal color

• A blob is a collection of contiguous
abnormal cells

• A user will enter the x, y coordinates of a
cell in the blob, and the program will
determine the count of all cells in that blob

Counting Cells in a Blob

Counting Cells in a Blob - Design

Algorithm for countCells(x, y)

if cell at (x, y) is outside the grid
the result is 0

else if color of cell at (x, y) ≠ abnormal color
the result is 0

else
set color of cell at (x, y) to temporary color
the result is 1 + number of cells in each piece of
the blob that includes a nearest neighbor

Counting Cells in a Blob -
Implementation

CSIS 3103 Fall 2010

ds05-3 2

Backtracking

• A systematic trial and error search for a solution
• Finding a path through a maze

– To walk through a maze, you will probably walk down
a path as far as you can go

– Eventually, you will reach your destination or you
won’t be able to go any farther

– If you can’t go any farther, you will need to consider
alternative paths

• Backtracking is a systematic, nonrepetitive
approach to trying alternative paths and
eliminating them if they don’t work

Backtracking (cont.)

• If you never try the same path more than
once, you will eventually find a solution
path if one exists

• Recursion provides a relatively
straightforward implementation of
backtracking

• Each activation frame is used to
remember the choice that was made at
that particular decision point

Finding a Path through a Maze

• Problem
– Use backtracking to find a display the path

through a maze

– From each point in a maze, you can move to
the next cell in a horizontal or vertical
direction, if the cell is not blocked

Finding a Path through a Maze
(cont.)

• Analysis
– The maze will consist of a grid of colored cells
– The starting point is at the top left corner (0,0)
– The exit point is at the bottom right corner
(getNCols() – 1, getNRow -1)

– All cells on the path will be BACKGROUND color
– All cells that represent barriers will be ABNORMAL

color
– Cells that we have visited will be TEMPORARY color
– If we find a path, all cells on the path will be set to
PATH color

Recursive Algorithm for
findMazePath(x, y)

if current cell is outside the maze
return false (you are out of bounds)

else if current cell is part of the barrier or has already been visited
return false (you are off the path or in a cycle)

else if current cell is the maze exit
recolor it to the path color and return

else // Try to find a path from the current cell to the exit:
mark current cell by recoloring it to the path color
for each neighbor of the current cell

if a path exists from the neighbor to the maze exit
return true

// No neighbor of the current cell is on the path
recolor current cell to the temporary color (visited) and
return false

