
CSIS 3103 Fall 2010

ds05-2 1

CSIS 3103

Ch 5:
Recursion, Recursion, Recursion,

Recursion, Recursion, Recursion, Recursion, Recursion, Recursion, Recursion,

The Cost of Recursion

• Every method call involves allocating
resources on the system stack for
parameters, local variables, return
address, etc.
– Activation frame/call frame

• Exiting from the method requires removing
the activation frame from the stack

• Recursive methods may have significant
overhead due to allocating/deallocating
activation frames

Making Recursion More Efficient

• Recursive methods where the recursive
call is the last statement executed can be
as efficient as an equivalent loop

• This is called tail recursion

• Optimizing compilers actually replace
recursive calls with a loop when tail
recursion is detected

Recursive factorial

factorial(4, 1)

n 4 f 1

n 3 f 4

n 1 f 24

n 2 f 12

24

Tail Recursive factorial

private static int factorial(int n, int f) {

if (n <= 1)

return f;

else

return factorial(n – 1, n * f);

}

public static int factorial(int n) {

return factorial(n, 1);

}

Recursive Array Search

Base cases
Empty array: target not found, result is -1

First element of the array = target: result is
the subscript of first element

Recursive step:
Search the rest of the array, excluding the first
element

CSIS 3103 Fall 2010

ds05-2 2

Recursive Linear Search Recursive Linear Search

/** Wrapper for recursive linear search method

@param items The array being searched

@param target The object being searched for

@return The subscript of target if found;

otherwise ‐1

*/

public static int linearSearch(
Object[] items, Object target) {

return linearSearch(items, target, 0);

}

Designing a Binary Search
Algorithm

• Requires a sorted array

• Checks the middle element for a match
with the target

• Base cases
– The array is empty

– Element being examined matches the target

• Recursive case
– Throw away the half of the array that cannot

contain the target and continue the search

Binary Search Algorithm

Caryn Debbie Dustin Elliot Jacquie Jonathon Rich

Dustin

target

first = 0 last = 6middle = 3

First call

Binary Search Algorithm

Caryn Debbie Dustin Elliot Jacquie Jonathon Rich

Dustin

target

first = 0 last = 2

middle = 1

Second call

Binary Search Algorithm

Caryn Debbie Dustin Elliot Jacquie Jonathon Rich

Dustin

target

first= middle = last = 2

Third call

CSIS 3103 Fall 2010

ds05-2 3

Binary Search Algorithm

if the array is empty
return –1

else if the middle element matches the target
return the subscript of the middle

else if the target < the middle element
recursively search array elements before the
middle element and return the result

else
recursively search array elements after the
middle element and return the result

Implementation of Binary Search

Implementation of Binary Search

binarySearch(items, target)

Testing Binary Search

Use arrays with
– an even number of elements
– an odd number of elements
– duplicate elements

Test each array for the following cases:
– the target is the element at each position of the array,

starting with the first position and ending with the last
position

– the target is less than the smallest array element
– the target is greater than the largest array element
– the target is a value between each pair of items in the

array

Efficiency of Binary Search

At each recursive call half the array
elements are eliminated

O(log2n)

• An array of 16 needs 5 probes in the worst
case
16 = 24

5 = log216 + 1

• An array with 32,768 elements requires
only 16 probes! (log232768 = 15)

Arrays.binarySearch Method

Java API class Arrays contains a
binarySearch method
– Can be called with sorted arrays of primitive

types or of objects

– If the array is not sorted, the results are
undefined

– If there are multiple copies of the target value,
there is no guarantee which one will be found

– Throws ClassCastException if the target is
not comparable to the array elements

CSIS 3103 Fall 2010

ds05-2 4

Removing Recursion

• Tail recursive algorithms can easily be
replaced by loops

• Other recursive algorithms may have to
use stacks to replace recursive calls
– Defeats the purpose, since recursion

automatically incorporates use of the system
stack

Infinite Recursion

• Calling factorial with a negative
argument will not terminate because n will
never equal 0

• Eventually a StackOverflowError
exception occurs

• Make sure recursive methods always will
reach a stopping case

• In the factorial method, throw an
IllegalArgumentException if n is
negative

Recursive Definition of Linked
List

A linked list is
– Empty, or

– It contains a node that has a reference
to a linked list (the rest of the list)

Class LinkedListRec<E> implements
several list operations using recursive
methods

