
CSIS 3103 Fall 2010

ds04-1 1

CSIS 3103

Ch 4: Queues

The Queue ADT

A queue is a collection ADT where elements are
maintained in the order they were inserted and accessed
using the first-in-first-out (FIFO) access protocol.

Operations
1. Add (Offer): Add an element to the back of the

queue.
2. Peek: If the queue is not empty, return the element

that is at the front of the queue.
3. Remove: If the queue is not empty, delete and

return the element that is at the front of the queue.

Queue ADT

• Can visualize a queue as a line of
customers waiting for service

• The next person to be served is the one
who has waited the longest

• New customers arrive at the end of the
line

Operating Systems Use Queues

• To manage tasks waiting for a scarce
resource

• Ensure that the tasks are carried out in the
order that they were generated
– Processes waiting for access to a shared CPU

– Print jobs waiting for the printer

A Print Queue

Printing is much slower than the process of
selecting a print job and so a queue is used

Print Stack? No Way!

• Stacks are last-in, first-out (LIFO)

• The most recently selected document
would be the next to print

• Unless the "print stack" is empty, your
print job may never get executed if others
are issuing print jobs

CSIS 3103 Fall 2010

ds04-1 2

Queue Interface Specification

Throws exception Returns special value

Insert add(e) offer(e)

Remove remove() poll()

Examine element() peek()

LinkedList Implements the Queue
Interface

LinkedList provides methods for
inserting and removing elements at either
end of a double-linked list

Queue<String> q =
new LinkedList<String>();

creates a new Queue that stores references
to String objects

LinkedList Implements the Queue
Interface

Queue<String> q =
new LinkedList<String>();

• The actual object referenced by q is a
LinkedList<String>

• Because q is a Queue<String>
reference, it can only call Queue methods
(actually there are a few non-queue operations
included)

Implementing a Queue with a
Double-Linked List

• Insertion and removal from either end of a
double-linked list is O(1) so either end can
be the front (or rear) of the queue

• Java designers decided to make the head
of the linked list the front of the queue and
the tail the rear of the queue

Implementing a Queue with a
Single-Linked List

• Class ListQueue contains a collection of
Node<E> objects

• Elements are added at the rear of a queue
and removed from the front

• Need references to the first and last list
nodes

Implementing a Queue with a
Single-Linked List

Class invariant: size  0 and
size > 0  front references the "oldest" node

and
rear references the "newest" node

CSIS 3103 Fall 2010

ds04-1 3

Linked Implementations Compared

• Time efficiency of using a single- or
double-linked list to implement a queue
are comparable

• But there are some space inefficiencies

• Storage space is increased when using a
linked list due to references stored at each
list node (especially for double-linked)

Implementing a Queue with a
Circular Array

• Array implementation of lists
– Add and remove at the rear of array is

constant time

– Add and remove at the front is linear time

• A "circular array" supports the best of both

Queue as a Circular Array

Remove

Insert

Implementing a Queue with a
Circular Array

Class invariant: size  0 and
front = (rear – size + 1 + capacity) % capacity

Implementing a Queue with a
Circular Array

Implementing ArrayQueue<E>.Iter

• Like ListQueue<E>, we must implement
the missing Queue methods and an inner
class Iter to fully implement the Queue
interface

• Iter.remove method throws an
UnsupportedOperationException
because it would violate the contract for a
queue to remove an item other than the
first one

CSIS 3103 Fall 2010

ds04-1 4

Comparing Implementations

• Comparable computation times for all three
implementations

• Linked-list implementations require more
storage because of the extra space required
for the links
– Each single-linked list node stores two references

– Each double-linked list node stores three references

