CSIS 3103

CSIS 3103

Ch 4: Queues

Fall 2010

The Queue ADT

A queue is a collection ADT where elements are
maintained in the order they were inserted and accessed
using the first-in-first-out (FIFO) access protocol.

Operations
1. Add (Offer): Add an element to the back of the
queue.
2. Peek: If the queue is not empty, return the element
that is at the front of the queue.
3. Remove: If the queue is not empty, delete and
return the element that is at the front of the queue.

Queue ADT

» Can visualize a queue as a line of
customers waiting for service

« The next person to be served is the one
who has waited the longest

* New customers arrive at the end of the
line

Operating Systems Use Queues

» To manage tasks waiting for a scarce
resource

» Ensure that the tasks are carried out in the
order that they were generated
— Processes waiting for access to a shared CPU
— Print jobs waiting for the printer

A Print Queue

Printing is much slower than the process of
selecting a print job and so a queue is used

o 1P LaserJet 4050 Series PS - Use Printer Offline

Pricker Document View Help

ETT T omeer [poges [sce [sterted [e

:]monﬂ Word - Queues_Paud_1007.d0¢ Poud Wolf gang 2 9.75M8 1518 PM 10/2/2003
() Merosct Werd - Stacks. doc PadWolgany 46 2.0sM8 155357 P 10/7/2003
[Mcrosat werd - Trees2.doc Padwolgsng 4 #am8 1:54:41 M 1072/2003

all=

3 document{(s) in queue |

ds04-1

Print Stack? No Way!

« Stacks are last-in, first-out (LIFO)

* The most recently selected document
would be the next to print

* Unless the "print stack" is empty, your

print job may never get executed if others
are issuing print jobs

CSIS 3103

Queue Interface Specification

boolean offer(E item) Inserts 1tem at « Ret
d.
q

E remove() Removes the entry at the front of the queue and returns it if the queuc is

s empty, throws a NoSuchElesentException

€ pal10) ¢ the front of the queue and returns it; returns nul1 if

E peek() s the entry at the front of the queue without removing it returns.

G
null if the

¢ is empty.

E element() Re entry at the front of the queue withour removing it. If the
queue is empty, throws a NoSuchE lementException.

Throws exception Returns special value
Insert add(e) offer(e)
Remove |remove() poll QO
Examine |element() peek()

Fall 2010

LinkedList Implements the Queue
Interface

LinkedList provides methods for
inserting and removing elements at either
end of a double-linked list

Queue<String> q =
new LinkedList<String>();

creates a new Queue that stores references
to String objects

LinkedList Implements the Queue
Interface

Queue<String> q =
new LinkedList<String>(Q);

» The actual object referenced by q is a
LinkedList<String>

« Because q is a Queue<String>
reference, it can only call Queue methods

(actually there are a few non-queue operations
included)

Implementing a Queue with a
Double-Linked List

« Insertion and removal from either end of a
double-linked list is O(1) so either end can
be the front (or rear) of the queue

« Java designers decided to make the head
of the linked list the front of the queue and
the tail the rear of the queue

Implementing a Queue with a
Single-Linked List

¢ Class ListQueue contains a collection of
Node<E> objects

« Elements are added at the rear of a queue
and removed from the front

* Need references to the first and last list
nodes

ds04-1

Implementing a Queue with a
Single-Linked List

Class invariant: size > 0 and

size > 0 = front references the "oldest" node
and
rear references the "newest" node

CSIS 3103

Linked Implementations Compared

» Time efficiency of using a single- or
double-linked list to implement a queue
are comparable

« But there are some space inefficiencies

 Storage space is increased when using a
linked list due to references stored at each
list node (especially for double-linked)

Fall 2010

Implementing a Queue with a
Circular Array

 Array implementation of lists

— Add and remove at the rear of array is
constant time

— Add and remove at the front is linear time
< A "circular array" supports the best of both

Queue as a Circular Array

front = [0}—={ & size =

capacity =

rear = [_4—»=

size =

w[@el]|t [~~]+] =

front = [1}—»

capacity =

/

rear = [4}——» -
rear = | O—={ A size =

front = 1 B
ks capacity =

/

Implementing a Queue with a
Circular Array

rear = o———{ A size = [3]
The Effect of Two ‘ r
Deletions + capacity = [5]
front = | — /
|-
and One Insertion —
% size = 4
rear = 11— &
+ capacity = [_35)
front = [I/

Class invariant: size > 0 and
front = (rear — size + 1 + capacity) % capacity

Implementing a Queue with a
Circular Array

: E "
Reallocating a ! L

il

Circular Array

rear

front
[
capacity - 1 rear

capacity

ds04-1

Implementing ArrayQueue<E>._ lter

e Like ListQueue<E>, we must implement
the missing Queue methods and an inner
class Iter to fully implement the Queue
interface

= I ter.remove method throws an
UnsupportedOperationException
because it would violate the contract for a
gueue to remove an item other than the
first one

CSIS 3103 Fall 2010

Comparing Implementations

» Comparable computation times for all three
implementations

« Linked-list implementations require more
storage because of the extra space required
for the links
— Each single-linked list node stores two references
— Each double-linked list node stores three references

ds04-1 4

