CSIS 3103

CSIS 3103

Ch 2: Iterators

Fall 2010

The lterator Pattern

An iterator is like a moving place marker that
keeps track of the current position in a list

Inmahze Check valldlty of Advance
|terator lte rator iterator

for (int i =0;i <a. length; i++) {
System.out.printin(ali]);

3 Access
data

Iterator pattern for array-like structures ‘

The Iterator<E> Interface

The Iterator interface specifies objects that
can iterate through the elements of a collection

boolean hasNext() Returns true if the next method returns a value.

E next() Returns the next element. If there are no more elements,
throws the NoSuchElementException.

void remove() Removes the last element returned by the next method.

Combines the access data
and advance iterator steps

Which is more efficient?

Iterator<Integer> iter = list.iterator();
while (iter.hasNext()) {

int value = itr.next();

// Do something with value

}

or

for (int i = @; 1 < list.size(); i++) {
int value = list.get(i);
// Do something with value

The Iterable Interface

* Requires an implementing class to provide
an iterator method

* The Col lection interface extends the
Iterable interface

public interface Iterable<E> {
/** Returns an iterator over the elements 1in
this collection */
Iterator<E> iterator();

}

Factory method: A method that creates a new object
whose actual type is unknown

ds02-6

Implementing an Iterator
Usually done with in a nested inner class
private static class IterImpl<E>

implements Iterator<E> {

public Iterator<E> iterator() {
return new IterImpl<E>(head);

CSIS 3103

The Enhanced for Statement

for (formalParam : collection) { ... }

for (String nextStr : myList) { .. }

During each loop iteration, formalParam references
the next element of collection, starting with the

first element. The collection must be an array or a
class that implements the Iterable interface
(includes all classes that implement Collection).

Fall 2010

Iterator limitations

¢ Can only traverse a List in the forward direction

« Provides a remove method but no add

« Must start at the beginning of the list
ListIterator<E> is an extension of
Iterator<E> that overcomes these limitations

ListIterator positions are assigned an index
from 0 to size

ListIterator<E> Interface

void add(E obj) Inserts object obj into the list just before the item that would returned by the

next call to method next and after the item that would have b returned by
method previous. If method previous is called after add, the newly inserted

object will be returned.

boolean hasNext() Returns true if next will not throw an ¢;

boolean hasPrevious() R rue if previous wil

€ next() Retur ves th

the next object and move
end, the NoSuchE lementException is thrown.

int nextIndex() Returns the index of the i
iterator is at the end, the

that will be returned by the next call to next. If the
ize is returned.

E previous() nd moves the iterator backward. If the iterator is at

voSuchE 1ementExcepton is thrown.

int previousIndex() ndex of the item that will be returned by the next call to previous.

If the iterator is at the beginning of the list, -1 is retumed.

void remove() Removes the last item returned from a call to next or previous. If a call to remove
is not preceded by a call to next or previous, the I11egalStateException is
throws

void set(E obj) Replaces the last item returned from a call to next or previous with obj. If a call
to set is not preceded by a call to next or previous, the I11egalStateException
is thrown.

Listlterator<E> Interface

public ListIterator<€> listIterator() Returns a ListIterator that begins just before

the first list element.

public ListIterator<€> listIterator(int index) Returns a ListIterator that begins just before
position index.

Iterator and ListIterator

» Tterator interface requires fewer
methods and can be used to iterate over
more general data structures but only in
one direction

e Iterator is required by Collection
classes

e ListIterator is required only by the
List interface

KWLinkedList

A class that partially implements the List
interface using a double-linked list with a
ListIterator

head 1 next = - next next next = mull_ |
tail = ==t~ | prev = null pre : prev - 3 prev = -1
size = 4 data = "Toa" data = "Bick" data = "Harry" data = "Sam" ‘ I
\ . J\ J
L 7

nextItem =
lastItemReturned =
index = 2

ds02-6

CSIS 3103

Fall 2010

© KWLinkedList <E>

o size: int
e head: Node<>
o tail: Node<>

_ ainterfacen
© Listiterator <E>

java.util

eeceeeoeeoe

(& Node <E>

add

a data: E
o next: Node<> |
o prev: Node<>

@ KWListiter

o nextitem: Node<>
o lastitemRetumed: Node<>
o index: int

ceeco0eeo000

AbstractCollection, AbstractList,
AbstractSequentiallList

« The Java API includes these "helper"
abstract classes to help build
implementations of their corresponding
interfaces

 Helper classes provide implementations
for interface unused methods so
programmer can extend the abstract
classes and implement only the desired
methods

Implementing a Subclass of
Collection<E>

Extend AbstractCollection<E> by
implementing only:

- add(E)

-size()

- iterator()

— An inner class that implements Iterator<E>

Implementing a Subclass of
List<E>

Extend AbstractList<E> by implementing
only:

-add(int, E)

- get(int)

- remove(int)

- set(int E)

-size()
o AbstractList implements Iterator<E>

List and RandomAccess Interfaces

» Accessing a LinkedList using an index
requires an O(n) traversal of the list until
the index is located

» The RandomAccess interface is applied to
list implementations in which indexed
operations are efficient (e.g. ArrayList)

ds02-6

