
CSIS 3103 Fall 2010

ds02-5 1

CSIS 3103

Linked List
Implementations

Linked Lists

ArrayList add and remove methods are
O(n)

Linked lists can add or remove in O(1) in
some cases

Single-linked List Nodes

A node contains a data item
and reference to a node (link)

Node<String> head = new Node<String>("Tom");
Node<String> head.next = new Node<String>("Dick");
Node<String> head.next.next = new Node<String>("Harry");
Node<String> head.next.next.next = new Node<String>("Sam");

SingleLinkedList Class

Several helper methods are used to
implement these operations

addFirst(E)

head =

SLList<String>

next =
data = "Tom"

Node<String>

next =
data = "Dick"

Node<String>

next =
data = "Ann"

Node<String>

Add element to
head of the list

1
2

addAfter(Node<E>, E)

head =

SLList<String>

next =
data = "Tom"

Node<String>

next =
data = "Dick"

Node<String>

next =
data = "Ann"

Node<String>

Element added
after a given node

1
2

node
(parameter)

CSIS 3103 Fall 2010

ds02-5 2

removeFirst()

head =

SLList<String>

next =
data = "Tom"

Node<String>

next =
data = "Dick"

Node<String>

temp

removeAfter(Node<E>)

head =

SLList<String>

next =
data = "Tom"

Node<String>

next =
data = "Dick"

Node<String>

next =
data = "Ann"

Node<String>

temp

node
(parameter)

Traversing a Single-Linked List

head =

SLList<String>

next =
data = "Tom"

Node<String>

next =
data = "Dick"

Node<String>

next =
data = "Ann"

null

Node<String>

nodeRef

Characteristics of single-linked list

• Insert/remove at the front of the list is O(1)

• Insert/remove at other positions is O(n)

• Insert/remove require a reference to the
previous node

• Can traverse the list only in the forward
direction

The double-linked list overcomes some of
these limitations

Double-Linked Lists

A node contains a data item
and references to previous
and next nodes

Inserting in a Double-Linked List

next =
= prev

data = "Harry"

Node

next = null
= prev

data = "Sam"

Node

next =
= prev

data = "Sharon"

Node

Node<E> sharon = new Node<E>("Sharon");

sharon.next = sam;

sharon.prev = sam.prev;

sam.prev.next = sharon;

sam.prev = sharon

from predecessor

to
predecessor

sam

CSIS 3103 Fall 2010

ds02-5 3

Removing from a Double-Linked
List

next =
= prev

data = "Dick"

Node

next =
= prev

data = "Harry"

Node

next =
= prev

data = "Sharon"

Node

harry.prev.next = harry.next
harry.next.prev = harry.prev harry

A Double-Linked Class

A double-linked list object has
data fields:

– head (reference to first list Node)

– tail (reference to last list Node)
– size

Insertion at either end is O(1)
– And require special cases

Insertion elsewhere is still O(n)

Circular Lists
Singly-linked circular lists

– Link last node to the first node

Circular double-linked list
– Link last node to the first node

– Link first node to the last node

Advantages:
– Continue to traverse even after passing the first or

last node

– Visit all elements from any starting point

– Never fall off the end of a list

Disadvantage: Code must avoid an infinite loop!

Circular Lists

