
CSIS 3103 Fall 2010

ds02-4 1

CSIS 3103
More

Algorithm Analysis

Efficiency Analysis

• With an array of n elements, Sequential
Search makes f(n) = n/2 comparisons, on
average, if the target is in the array

• This algorithm runs in linear time, because
n/2 is of the same order as the linear
function g(n) = n. (The graph is a line.)

• This is abbreviated: O(n)

Big-O Notation

An abbreviation of "order of magnitude"

T(n) = O(f(n))

• There are positive constants, n0 and c
such that for all n > n0, cf(n)  T(n)

• cf(n) is an upper bound on T(n)

• If T is a measure of the performance of
an algorithm, it will never be worse than
cf(n)

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

Simple Statement 0

}

}

for (int i = 0; i < n; i++) {

Simple Statement 1

Simple Statement 2

Simple Statement 3

Simple Statement 4

Simple Statement 5

}

Simple Statement 6

Simple Statement 7

...

Simple Statement 30

Nested loops execute
Simple Statement 0
n2 times

Loop execute 5
Simple Statements
n times

25 Simple Statements
executed, once each

How much work is required?

Big-O Notation

The growth rate of f(n) is determined by the fastest
growing term - the one with the largest exponent

In the example, an algorithm of

O(n2 + 5n + 25)

is more simply expressed as

O(n2)

In general, it is safe to ignore all constants and to
drop the lower-order terms when determining the
order of magnitude

CSIS 3103 Fall 2010

ds02-4 2

Efficiency Analysis

Goal: Simplify as much as possible by
getting rid of unnecessary information
– Rounding: 1,000,001  1,000,000

– Suppose it takes
• 50,000 ms for Windows to boot up

• 10 ms to process some transaction

– n transactions take (50,000 + 10n) ms

– 10n becomes more important as n gets large

Big-O Notation

A simple way to determine the big-O notation
of an algorithm is to look at the loops and to
see whether the loops are nested

Assuming a loop body consists only of simple
statements,

a single loop is O(n)

a pair of nested loops is O(n2)

a nested pair of loops inside another is O(n3)

. . .

Reasoning about algorithms

O(n) algorithm,
– For 5,000 elements takes 3.2 seconds
– For 10,000 elements takes 6.4 seconds
– For 15,000 elements takes ….?

O(n2) algorithm
– For 5,000 elements takes 3.2 seconds
– For 10,000 elements takes 12.8 seconds
– For 15,000 elements takes …?

Consider:

T(n) = 3(n – 1) + 3 (n – 2) + … + 3

= 3(n – 1 + n – 2 + n - 3 + … + 1)

= 3(1 + 2 + … + n – 1) = 3(n x (n-1))/2

= 3(n2 – n) / 2

for (int i = 1; i < n; i++) {
for (int j = i; j < n; j++) {

3 simple statements
}

}

Therefore T(n) = 1.5n2 – 1.5n

• When n = 0, the polynomial has the value 0

• For values of n > 1,
1.5n2 > 1.5n2 – 1.5n

Therefore, using n0 = 1 and c = 1.5 we conclude
that

T(n) is O(n2)

CSIS 3103 Fall 2010

ds02-4 3

Notation Common Growth Rates

Common Growth Rates
Effects of Different Growth

Rates

A Caution

• Beware of very large constant factors

• An algorithm running in time 1,000,000 N
is still O(N)

• But it might be less efficient on your data
set than one running in time 2N2 , which is
O(N2)

Algorithms with Exponential and
Factorial Growth Rates

Given an O(2n) algorithm, if 100 inputs takes
an hour then,

– 101 inputs will take 2 hours

– 105 inputs will take 32 hours

– 114 inputs will take 16,384 hours (almost 2
years!)

CSIS 3103 Fall 2010

ds02-4 4

When Worse is Better

Some cryptographic algorithms can be
broken in O(2n) time, where n is the number
of bits in the key

• A key length of 40 is considered
breakable by a modern computer,

• A key length of 100 bits will take a billion-
billion (1018) times longer than a key
length of 40

Performance of KWArrayList

• The set and get methods execute in
constant time: O(1)

• Inserting or removing general elements is
linear time: O(n)

• Adding at the end is (usually) constant
time: O(1)

• With our reallocation technique the average is
O(1)

– The worst case is O(n) because of
reallocation

