CSIS 3103

More Algorithm Analysis

Efficiency Analysis

- With an array of *n* elements, Sequential Search makes f(n) = n/2 comparisons, on average, if the target is in the array
- This algorithm runs in *linear time*, because n/2 is of the same order as the linear function g(n) = n. (The graph is a *line*.)
- This is abbreviated: O(*n*)

Big-O Notation

An abbreviation of "order of magnitude"

 $T(n) = \mathcal{O}(\mathbf{f}(n))$

- There are positive constants, n_0 and c such that for all $n > n_0$, $cf(n) \ge T(n)$
- cf(n) is an upper bound on T(n)
- If T is a measure of the performance of an algorithm, it will never be worse than cf(n)

Big-O Notation

The growth rate of f(n) is determined by the fastest growing term - the one with the largest exponent

In the example, an algorithm of

 $\mathcal{O}(n^2+5n+25)$

is more simply expressed as

O(*n*²)

In general, it is safe to ignore all constants and to drop the lower-order terms when determining the order of magnitude

Efficiency Analysis

Goal: Simplify as much as possible by getting rid of unnecessary information

- Rounding: 1,000,001 \approx 1,000,000
- Suppose it takes
 - 50,000 ms for Windows to boot up 10 ms to process some transaction
- -n transactions take (50,000 + 10n) ms
- -10n becomes more important as *n* gets large

Big-O Notation

A simple way to determine the big-O notation of an algorithm is to look at the loops and to see whether the loops are nested

Assuming a loop body consists only of simple statements,

- a single loop is O(n)
- a pair of nested loops is $O(n^2)$
- a nested pair of loops inside another is $\mathrm{O}(n^3)$

. . .

Reasoning about algorithms

O(n) algorithm,

- For 5,000 elements takes 3.2 seconds
- For 10,000 elements takes 6.4 seconds
- For 15,000 elements takes?

O(n²) algorithm

- For 5,000 elements takes 3.2 seconds
- For 10,000 elements takes 12.8 seconds
- For 15,000 elements takes ...?

Therefore $T(n) = 1.5n^2 - 1.5n$

• When *n* = 0, the polynomial has the value 0

For values of
$$n > 1$$
,

 $1.5n^2 > 1.5n^2 - 1.5n$

Therefore, using $n_0 = 1$ and c = 1.5 we conclude that

T(n) is $O(n^2)$

Notation					
Symbol	Meaning				
T(<i>n</i>)	The time that a method or program takes as a function of the number of inputs, <i>n</i> . We may not be able to measure or determine this exactly.				
f(<i>n</i>)	Any function of <i>n</i> . Generally, $f(n)$ will represent a simpler function than $T(n)$, for example, n^2 rather than $1.5n^2 - 1.5n$.				
O(f(<i>n</i>))	Order of magnitude. $O(f(n))$ is the set of functions that grow no faster than $f(n)$. We say that $T(n) = O(f(n))$ to indicate that the growth of $T(n)$ is bounded by the growth of $f(n)$.				

Common Growth Rates					
Big-O	Name				
O(1)	Constant				
$O(\log n)$	Logarithmic				
O(<i>n</i>)	Linear				
$O(n \log n)$	Log-linear				
$O(n^2)$	Quadratic				
$O(n^3)$	Cubic				
$O(2^n)$	Exponential				
O(!)	Factorial				

Effects of Different Growth Rates						
O(f(<i>n</i>))	f(50)	f(100)	f(100)∕f(50)			
O(1)	1	1	1			
$O(\log n)$	5.64	6.64	1.18			
O(<i>n</i>)	50	100	2			
$O(n \log n)$	282	664	2.35			
$O(n^2)$	2500	10,000	4			
O(n ³)	12,500	100,000	8			
O(2")	1.126×10^{15}	1.27×10^{30}	1.126×10^{15}			
a	3.0×10^{64}	9.3×10^{157}	3.1×10^{93}			

A Caution

- Beware of very large constant factors
- An algorithm running in time 1,000,000 *N* is still O(*N*)
- But it might be less efficient on your data set than one running in time $2N^2$, which is $O(N^2)$

Algorithms with Exponential and Factorial Growth Rates

Given an $O(2^n)$ algorithm, if 100 inputs takes an hour then,

- 101 inputs will take 2 hours
- 105 inputs will take 32 hours
- 114 inputs will take 16,384 hours (almost 2 years!)

When Worse is Better

Some cryptographic algorithms can be broken in $O(2^n)$ time, where *n* is the number of bits in the key

- A key length of 40 is considered breakable by a modern computer,
- A key length of 100 bits will take a billionbillion (10¹⁸) times longer than a key length of 40

Performance of KWArrayList

- The set and get methods execute in constant time: O(1)
- Inserting or removing general elements is linear time: O(n)
- Adding at the end is (usually) constant time: O(1)
- With our reallocation technique the average is $O(1) \label{eq:O1}$
 - The worst case is O(n) because of reallocation