CSIS 3103
 More
 Algorithm Analysis

Big-O Notation

An abbreviation of "order of magnitude"
$T(n)=\mathrm{O}(\mathrm{f}(n))$

- There are positive constants, n_{0} and c such that for all $n>n_{0}, \operatorname{cf}(n) \geq \mathrm{T}(n)$
- $c \mathrm{f}(n)$ is an upper bound on $\mathrm{T}(n)$
- If T is a measure of the performance of an algorithm, it will never be worse than $\operatorname{cf}(n)$

Big-O Notation

The growth rate of $f(n)$ is determined by the fastest growing term - the one with the largest exponent In the example, an algorithm of

$$
\mathrm{O}\left(n^{2}+5 n+25\right)
$$

is more simply expressed as

$$
\mathrm{O}\left(n^{2}\right)
$$

In general, it is safe to ignore all constants and to drop the lower-order terms when determining the order of magnitude

Efficiency Analysis

- With an array of n elements, Sequential Search makes $f(n)=n / 2$ comparisons, on average, if the target is in the array
- This algorithm runs in linear time, because $n / 2$ is of the same order as the linear function $g(n)=n$. (The graph is a line.)
- This is abbreviated: $\mathrm{O}(n)$

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        Simple Statement 0 Nested loops execute
    } Simple Statement 0
}
for (int i = 0; i < n; i++) {
        Simple Statement 1
        Simple Statement 2
        Simple Statement }
        Simple Statement 4
        Simple Statement 5
}
Simple Statement 6
Simple Statement 7
    Simple Statement 30
\begin{tabular}{|l|}
\hline \begin{tabular}{l} 
Loop execute 5 \\
Simple Statements \\
\(n\) times
\end{tabular} \\
How much work is required? \\
\hline
\end{tabular}
```


Efficiency Analysis

Goal: Simplify as much as possible by getting rid of unnecessary information

- Rounding: 1,000,001 $\approx 1,000,000$
- Suppose it takes
- $50,000 \mathrm{~ms}$ for Windows to boot up
- 10 ms to process some transaction
$-n$ transactions take ($50,000+10 n$) ms
$-10 n$ becomes more important as n gets large

Reasoning about algorithms

$\mathrm{O}(\mathrm{n})$ algorithm,

- For 5,000 elements takes 3.2 seconds
- For 10,000 elements takes 6.4 seconds
- For 15,000 elements takes?
$\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm
- For 5,000 elements takes 3.2 seconds
- For 10,000 elements takes 12.8 seconds
- For 15,000 elements takes ...?

Big-O Notation

A simple way to determine the big-O notation of an algorithm is to look at the loops and to see whether the loops are nested
Assuming a loop body consists only of simple statements,
a single loop is $\mathrm{O}(\mathrm{n})$
a pair of nested loops is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
a nested pair of loops inside another is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
...
\qquad

```
Consider:
```

```
for (int i = 1; i < n; i++) {
```

for (int i = 1; i < n; i++) {
for (int j = i; j < n; j++) {
for (int j = i; j < n; j++) {
3 simple statements
3 simple statements
}
}
}

```
\[
\begin{aligned}
\mathrm{T}(n) & =3(n-1)+3(n-2)+\ldots+3 \\
& =3(n-1+n-2+n-3+\ldots+1) \\
& =3(1+2+\ldots+n-1)=3(n \times(n-1)) / 2 \\
& =3\left(n^{2}-n\right) / 2
\end{aligned}
\]




\section*{A Caution}
- Beware of very large constant factors
- An algorithm running in time 1,000,000 N is still \(\mathrm{O}(N)\)
- But it might be less efficient on your data set than one running in time \(2 N^{2}\), which is \(\mathrm{O}\left(N^{2}\right)\)


\section*{Algorithms with Exponential and Factorial Growth Rates}

Given an \(\mathrm{O}\left(2^{n}\right)\) algorithm, if 100 inputs takes an hour then,
- 101 inputs will take 2 hours
- 105 inputs will take 32 hours
- 114 inputs will take 16,384 hours (almost 2 years!)

\section*{When Worse is Better}

Some cryptographic algorithms can be broken in \(\mathrm{O}\left(2^{n}\right)\) time, where \(n\) is the number of bits in the key
- A key length of 40 is considered breakable by a modern computer,
- A key length of 100 bits will take a billionbillion \(\left(10^{18}\right)\) times longer than a key length of 40

\section*{Performance of KWArrayList}
- The set and get methods execute in constant time: \(\mathrm{O}(1)\)
- Inserting or removing general elements is linear time: O(n)
- Adding at the end is (usually) constant time: O(1)
- With our reallocation technique the average is \(\mathrm{O}(1)\)
- The worst case is \(\mathrm{O}(\mathrm{n})\) because of reallocation```

