CSIS 3103

CSIS 3103

More
Algorithm Analysis

Fall 2010

Efficiency Analysis

< With an array of n elements, Sequential
Search makes f(n) = n/2 comparisons, on
average, if the target is in the array

« This algorithm runs in linear time, because
n/2 is of the same order as the linear
function g(n) = n. (The graph is a line.)

« This is abbreviated: O(n)

Big-O Notation

An abbreviation of "order of magnitude"

T(n) = O(f(n))

* There are positive constants, n, and ¢
such that for all n > ny, cf(n) > T(n)

e cf(n) is an upper bound on T(n)

e If T is a measure of the performance of
an algorithm, it will never be worse than
cf(n)

for (int 1 = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
Simple Statement 0 —————— [Nested loops execute

} Simple Statement 0
n? times

}
for (int 1 = 0; i < n; i++) {
Simple Statement 1

Simple Statement 2 / Loop execute 5
Simple Statement 3 Simple Statements

X n times
Simple Statement 4
Simple Statement 5

¥ . _.— | 25 Simple Statements
Simple Statement 6 executed, once each

Simple Statement 7

How much work is required?
Simple Statement 30

Big-O Notation

The growth rate of f(n) is determined by the fastest
growing term - the one with the largest exponent

In the example, an algorithm of
O(n? + 5n + 25)
is more simply expressed as
Oo(n?)

In general, it is safe to ignore all constants and to
drop the lower-order terms when determining the
order of magnitude

ds02-4

f(n)

/o~ n e 5n 425

CSIS 3103

Efficiency Analysis

Goal: Simplify as much as possible by
getting rid of unnecessary information
— Rounding: 1,000,001 = 1,000,000

— Suppose it takes

* 50,000 ms for Windows to boot up
« 10 ms to process some transaction

- n transactions take (50,000 + 10n) ms
—10n becomes more important as n gets large

Fall 2010

Big-O Notation

A simple way to determine the big-O notation
of an algorithm is to look at the loops and to
see whether the loops are nested
Assuming a loop body consists only of simple
statements,

a single loop is O(n)

a pair of nested loops is O(n?)

a nested pair of loops inside another is O(n3)

Reasoning about algorithms

O(n) algorithm,
— For 5,000 elements takes 3.2 seconds
— For 10,000 elements takes 6.4 seconds
— For 15,000 elements takes?

0O(n?) algorithm
— For 5,000 elements takes 3.2 seconds
—For 10,000 elements takes 12.8 seconds
—For 15,000 elements takes ...?

Consider: for (int i = 1; i < n; i++) {
for (int j = i; j < n; j++) {
3 simple statements

}
¥

T(n)=3(h-1)+3(h-2)+...+3
=3(n-1+n-2 +n-3+..+1)
=3(1+2+...+n-1)=3(nx(n-1))/2
=3(n2-n)/2

Therefore T(n) = 1.5n? - 1.5n

¢ When n =0, the polynomial has the value 0

e For valuesofn>1,
1.5n2>1.5n2-1.5n

Therefore, using ny =1 and ¢ = 1.5 we conclude
that

T(n) is O(n?)

ds02-4

f(n)

15520~

1.5n* - 1.5n

CSIS 3103

Notation

Symbol Meaning

T(n) The time that a method or program takes as a function of the number of
inputs, 7. We may not be able to measure or determine this exactly.

f(n) Any function of n. Generally, f(n) will represent a simpler function than
T(n), for example, #? rather than 1.5 — 1.5n.

O(f(n)) Order of magnitude. O(f(n)) is the set of functions that grow no faster
than f(x). We say that T(n) = O(f(n)) to indicate that the growth of T(n) is
bounded by the growth of f(n).

Fall 2010

Common Growth Rates

Big-O Name

o(1) Constant
O(log n) Logarithmic
O(n) Linear

O(n log n) Log-linear
O(n?) Quadratic
o) Cubic
(27 Exponential
O(n!) Factorial

Common Growth Rates

15,000

1
/
Exponentia S
Exponential (.uhlc,
Quadratic
10,000
= -
= Log-linear _ -~
e
Linear __..
S 00 |
----------- Logarithmic
0
0 20 40 0

Effects of Different Growth
Rates

Off(n)) f(50) f(100) f(100)/£(50)
o) 1 1 1

Oflog n) 5.64 6.64 1.18

O(n) 50 100 2

O(n log n) 282 664 2.35

O(n?) 2500 10,000 4

o) 12,500 100,000 H

o2 1.126 x 10" 1.27 x 103 1.126 x 10"
Of(n) 3.0 x 10 9.3 x 10"57 3.1 x 10"

A Caution

« Beware of very large constant factors

 An algorithm running in time 1,000,000 N
is still O(N)

 But it might be less efficient on your data

set than one running in time 2N? , which is
O(N?)

ds02-4

Algorithms with Exponential and
Factorial Growth Rates

Given an O(2") algorithm, if 100 inputs takes
an hour then,

— 101 inputs will take 2 hours
— 105 inputs will take 32 hours

— 114 inputs will take 16,384 hours (almost 2
years!)

CSIS 3103

When Worse is Better

Some cryptographic algorithms can be

broken in O(2") time, where n is the number

of bits in the key

» A key length of 40 is considered
breakable by a modern computer,

» A key length of 100 bits will take a billion-
billion (108) times longer than a key
length of 40

Fall 2010

ds02-4

Performance of KWArrayList

The set and get methods execute in
constant time: O(1)

Inserting or removing general elements is
linear time: O(n)

Adding at the end is (usually) constant
time: O(1)

With our reallocation technique the average is
o@)

— The worst case is O(n) because of
reallocation

