CSIS 3103

CSIS 3103

Introduction to Data Structures

Fall 2010

Objectives

« Understanding and using data abstraction

» Designing and using efficient data structures
and algorithms

« Applying the techniques of object oriented
programming

« Gaining skill with professional grade software
development tools

» Applying software engineering techniques

Result: High quality software systems

What is "quality software"?

— It solves the right problem

— It works (correct and robust)

— Is modifiable without excessive time & effort
—Is reusable

—Is completed on time and within budget

— Is efficient

—Is well documented

—etc., etc., etc...

Software Engineering

The theory and
techniques that
underlie the
development of
high quality
software

Why Does it Matter?

Complex data structures and algorithms are
used in all significant software systems
— Data compression uses trees (MP3, GIF, etc.)
— Networking uses graphs (routers and
telephone networks)
— Operating systems use queues and stacks
(Scheduling and recursion)
— Security uses complex math algorithms: (GCD
and large primes)

Cho01-1

Data Structures

« The study of how data is organized,
manipulated, and used by computer
programs

« Ways to organize large amounts of data

Bits are grouped into strings to form
- integers
- floats
- characters
- character strings, . . .

10011101000101101010101110101001010111110000101010001...




CSIS 3103

Abstract Data Types

Fall 2010

Domain: The set of values represented
by the type
— attributes

Operations: Methods for processing
values from the domain
—behavior

ADT Design & Implementation

Specification
— Describe what an ADT does
Application
— Determine where the ADT would be useful (kinds of
problems it might help solve)
Implementation
— Determine how to code it

< concrete representation of data components
— different choices may affect use of memory

« algorithms implement the operations
— alternative algorithms may depend on data representation
— can effect execution time

A Design Problem

* You've been hired by a company that
provides Internet content infrastructure.
They need a data structure to look up
URLs by keyword.

There are many billions of documents on
the Web

The client has decided that ~100 thousand
keywords are enough

‘widget = http://images.acme.com/widget.jpg ‘

The Questions

What data structure should you use?
« How long will a lookup take?

* What about adding new keyword/URL
pairs?

Should we be worried about storage
requirements as well as lookup time?

Possible Solutions

e Alinked list of keyword/URL pairs
linear lookup time

e An array sorted by keywords, lookup using
binary search (divide and conquer)
logarithmic lookup time

* A binary search tree, keyed by keywords
logarithmic lookup time, under the right conditions

* A hash table
constant lookup time, under the right conditions
* Something else?

Cho01-1

And the Problem Will Change

* Web content doubles roughly every 6
months
— Space may be more important that time
— Will the software we design still work in 5 years?
« A more intelligent search on content
- e.g., “automobile” should also get things with “car”
— allow multiple keywords in searches
« Can we design software that will adapt?
— More frequent adds/deletes




CSIS 3103

Fall 2010

A One Shot Deal?

Can we use the same solution for items in
an Ebay database? Twitter tweets?

Key idea:

What details can be “abstracted” in the
software, so they can be reused later?

Abstraction & Information Hiding

Abstraction: Leave out complex details and
concentrate on the essentials
— Control abstraction (if, while,...)
— Procedural abstraction (methods)
— Data abstraction (types)
Information Hiding: Hiding the details of a

module to control access from the rest of the
system

The Software Life Cycle

« Software products go through several stages
as they mature from initial concept to finished
product

« The sequence of stages is called a life cycle

» Design and document software in an
organized way so that it can be easily
understood and maintained after the initial
release

e The person who maintains the software is not
necessarily the person who writes it

Software Life Cycle Activities

Certain activities are essential for software
development

— Problem definition

— Requirements specification

— Architectural, component, and detailed
designs

— Implementation
— Unit, integration, and acceptance tests
— Installation and maintenance

Problem Definition

The client proposes a problem
This client could be:
a friend or associate;
another department in your organization;
an external organization;
yourself
The problem must be well-defined.

Requirements Specification

« Produces a precise statement of the
problem

« Researches similar problems and
solutions

« Determines resources required
* Produces a time frame for the solution

Cho01-1




CSIS 3103

Fall 2010

Result: A requirements document

— Specifies precisely what is to be produced
— Includes criteria for the testing team
— Used to validate the solution

— The user manual will be derived from the
requirements document

Design

The design team determines:
— an outline of the solution;
—the software objects needed;
— other software components needed,;
— which parts already exist:

« libraries
 proprietary packages

Implementation

This is where the actual coding is done

« Individual components are implemented
separately

« All code must be thoroughly documented
« All code must be thoroughly tested

Testing

« Individual components tested (unit testing)
— Watch for special cases (boundary values)

¢ The entire system is assembled and
tested

« Does the solution solves the problem
correctly?

— May result in a revision of the requirements
document

Installation & Maintenance

Long-term maintenance includes:
— user support
— patches (“service packs”)
— revisions

Implementation Goals

Robustness: The program shouldn’t crash or do
something “unexpected” regardless of the input

Adaptability: The program should be easy to
modify in order to solve related but unforeseen
problems

Reusability: Software modules or packages
should be general enough to use in a wide
range of applications

Cho01-1




