
CSIS 3103 Fall 2010

Ch 01-1 1

CSIS 3103

Introduction to Data Structures

Objectives

• Understanding and using data abstraction
• Designing and using efficient data structures

and algorithms
• Applying the techniques of object oriented

programming
• Gaining skill with professional grade software

development tools
• Applying software engineering techniques

Result: High quality software systems

What is "quality software"?

– It solves the right problem

– It works (correct and robust)

– Is modifiable without excessive time & effort

– Is reusable

– Is completed on time and within budget

– Is efficient

– Is well documented

– etc., etc., etc…

Software Engineering

Why Does it Matter?

Complex data structures and algorithms are
used in all significant software systems

– Data compression uses trees (MP3, GIF, etc.)

– Networking uses graphs (routers and
telephone networks)

– Operating systems use queues and stacks
(Scheduling and recursion)

– Security uses complex math algorithms: (GCD
and large primes)

Data Structures

• The study of how data is organized,
manipulated, and used by computer
programs

• Ways to organize large amounts of data

Bits are grouped into strings to form
- integers
- floats
- characters
- character strings, . . .

10011101000101101010101110101001010111110000101010001…

CSIS 3103 Fall 2010

Ch 01-1 2

Abstract Data Types

Domain: The set of values represented
by the type
– attributes

Operations: Methods for processing
values from the domain
– behavior

ADT Design & Implementation
Specification

– Describe what an ADT does

Application
– Determine where the ADT would be useful (kinds of

problems it might help solve)

Implementation
– Determine how to code it

• concrete representation of data components
– different choices may affect use of memory

• algorithms implement the operations
– alternative algorithms may depend on data representation

– can effect execution time

A Design Problem
• You've been hired by a company that

provides Internet content infrastructure.
They need a data structure to look up
URLs by keyword.

• There are many billions of documents on
the Web

• The client has decided that 100 thousand
keywords are enough

widget  http://images.acme.com/widget.jpg

The Questions

• What data structure should you use?

• How long will a lookup take?

• What about adding new keyword/URL
pairs?

• Should we be worried about storage
requirements as well as lookup time?

Possible Solutions

• A linked list of keyword/URL pairs
linear lookup time

• An array sorted by keywords, lookup using
binary search (divide and conquer)
logarithmic lookup time

• A binary search tree, keyed by keywords
logarithmic lookup time, under the right conditions

• A hash table
constant lookup time, under the right conditions

• Something else?

And the Problem Will Change

• Web content doubles roughly every 6
months
– Space may be more important that time

– Will the software we design still work in 5 years?

• A more intelligent search on content
– e.g., “automobile” should also get things with “car”

– allow multiple keywords in searches

• Can we design software that will adapt?
– More frequent adds/deletes

CSIS 3103 Fall 2010

Ch 01-1 3

A One Shot Deal?

Can we use the same solution for items in
an Ebay database? Twitter tweets?

Key idea:

What details can be “abstracted” in the
software, so they can be reused later?

Abstraction & Information Hiding

Abstraction: Leave out complex details and
concentrate on the essentials
– Control abstraction (if, while,…)

– Procedural abstraction (methods)

– Data abstraction (types)

Information Hiding: Hiding the details of a
module to control access from the rest of the
system

The Software Life Cycle
• Software products go through several stages

as they mature from initial concept to finished
product

• The sequence of stages is called a life cycle

• Design and document software in an
organized way so that it can be easily
understood and maintained after the initial
release

• The person who maintains the software is not
necessarily the person who writes it

Software Life Cycle Activities

Certain activities are essential for software
development
– Problem definition
– Requirements specification
– Architectural, component, and detailed

designs
– Implementation
– Unit, integration, and acceptance tests
– Installation and maintenance

Problem Definition

The client proposes a problem

This client could be:
a friend or associate;

another department in your organization;

an external organization;

yourself

The problem must be well-defined.

Requirements Specification

• Produces a precise statement of the
problem

• Researches similar problems and
solutions

• Determines resources required

• Produces a time frame for the solution

CSIS 3103 Fall 2010

Ch 01-1 4

Result: A requirements document

– Specifies precisely what is to be produced

– Includes criteria for the testing team

– Used to validate the solution

– The user manual will be derived from the
requirements document

Design

The design team determines:
– an outline of the solution;

– the software objects needed;

– other software components needed;

– which parts already exist:
• libraries

• proprietary packages

Implementation

This is where the actual coding is done

• Individual components are implemented
separately

• All code must be thoroughly documented

• All code must be thoroughly tested

Testing
• Individual components tested (unit testing)

– Watch for special cases (boundary values)

• The entire system is assembled and
tested

• Does the solution solves the problem
correctly?
– May result in a revision of the requirements

document

Installation & Maintenance

Long-term maintenance includes:
– user support

– patches (“service packs”)

– revisions

Implementation Goals

Robustness: The program shouldn’t crash or do
something “unexpected” regardless of the input

Adaptability: The program should be easy to
modify in order to solve related but unforeseen
problems

Reusability: Software modules or packages
should be general enough to use in a wide
range of applications

