
 - 1 - Last Modified: 10/18/2004

Unit Testing in Eclipse with JUnit1

© 2004 Michael Olan
Richard Stockton College

Pomona, NJ 08240

Audience: Introductory programming and problem solving (CS-1, CS-2), data structures

Eclipse Version: 3.0

Introduction to Unit Testing

Software testing is an important part of the software development process, but the topic is often neglected in
the undergraduate computer science curriculum. Often, the beginner's way of testing code is to execute the
program and see if the results seem reasonable. While this may work for very simple programs, it is not
effective in projects of any realistic size. So the first design problem to solve is how to develop an effective
testing strategy. A naïve approach might be to insert System.out.println statements at strategic points
in the code to display intermediate results. This technique is not acceptable for a number of reasons. These
output statements will need to be removed before releasing the production code, and likely re-inserted when
new bugs are found later on. Large amounts of debugging output can result in "scroll blindness", where the
programmer has a difficult time interpreting the results.

To be effective, tests must be repeatable to ensure that modifications have corrected the problem
and not have not introduced new errors (regression testing). To be practical, such testing must be
automated.

Unit testing is a particularly useful and natural way to test an object oriented development project. This
technique, in conjunction with "Test Driven Development" (Extreme Programming) is an effective way to
introduce good software testing practice in various software design courses. JUnit is useful in automating
such testing, which encourages programmers to incorporate the technique. Unit testing with JUnit has the
dual goals of increasing code quality and writing code faster. These apparently contradictory outcomes are
accomplished by spending less time debugging, and enhancing one's confidence to improve existing code
and add new features. A JUnit plug-in is built into Eclipse, further enhancing the tool.

A unit test exercises a "unit" of code in isolation and compares actual with expected results. In Java, the unit
is usually a class. Unit tests invoke one or more methods from a class to produce observable results that are
verified automatically.

Proponents of Extreme Programming (XP) recommend test-driven development as a desirable and effective
way to develop software. This technique involves first designing test cases, and then developing class
behavior that will satisfy the tests. Class implementation is done incrementally, with tests performed
whenever a change is made.

"If code has no automated test case written for it to prove that it works, it must be assumed not to
work. An API that does not have an automated test case to show how it works must be assumed un-
maintainable."

Java Tools for eXtreme Programming, Hightower & Lesiecki
Guidelines for Software Testing

1 This project was funded by an Eclipse Innovation Grant, IBM Corporation

 - 2 - Last Modified: 10/18/2004

• Tests should use the same language as the code being tested
• Test code should be separate from implementation and application code
• Test methods should be independent of the results of other methods
• Testing should be done often, and executing tests should be fast and easy
• Test cases should be logically grouped into test suites
• Tests should be self-checking, and produce immediate feedback that is be easy to read and

interpret

JUnit

JUnit is a Java framework for writing and automating unit tests. In Java, a unit under test is usually a method.
A typical unit test involves verifying that a method accepts input parameters in a certain range and returns
the expected value or modifies the state of the object as expected for each input. In other words, does the
method uphold the terms of its contract (specifications)?

Terminology

A test case is a set of tests that exercises some common behavior, such as for a class or a method. A test case
defines a test fixture, that provides that resources (data) needed to run the test. A test suite is a collection of
related test cases. A TestSuite class selects all methods whose names start with test.

All public, non-static, parameterless methods whose names begin with test are text methods.

The steps taken when JUnit executes a test case are as follows:

1. Execute the setUp method to initialize the test fixture.
2. Execute the textXXX method.
3. Execute the tearDown method.

Insert a diagram

Any assert method that fails will terminate the test method, i.e. there will be a maximum of one failure per
test method. In most situations, at most a few assert method calls should be used in any test method.

Core JUnit Assert Methods

assertTrue/False – asserts that a condition is true/false
assertEquals – asserts that two objects are equal
assertNull/NotNull – asserts that an object is/is not null
assertSame/NotSame – asserts that two objects refer to the same object
fail – fails a test

There are 20 forms for the assertEquals method for many different types (primitives mostly). The
assertEquals method uses == for comparing primitives, and .equals for objects. In the case of
floating point numbers, an additional parameter representing the error tolerance level is required. See the API
specifications for the Assert class for details.

Eclipse includes a plug-in that integrates JUnit into the Java IDE, that support creating and running unit tests.

Keep the bar green to keep the code clean. – The JUnit motto

 - 3 - Last Modified: 10/18/2004

A Simple Example

This first example will illustrate testing a simple class to represent a bank account. The requirements of the
class are that instances maintain a balance that must be non-negative. The behavior of account objects
include deposit, withdraw, getBalance and equals. The first two methods must provide an
amount to be used in the transaction.

Before we begin, let's get an understanding of the behavior of an account object by designing a test plan.

For the deposit method (starting with balance = 200):

Test Case Amount Reason Expected Result
 1 300 normal 500
 2 0 boundary 200
 3 -300 error ?

For the withdraw method (starting with balance = 200):

Test Case Amount Reason Expected Result
 1 150 normal 50
 2 200 boundary 0
 3 0 boundary 200
 4 -100 error ?
 5 300 error ? (overdraft)

We'll build the class and corresponding test cases in Eclipse.

Let's start simple by defining the constructors and the deposit method for the Account class. Although
the deposit method is very easy to write, we won't implement it yet.

 - 4 - Last Modified: 10/18/2004

Fig. 1

Writing unit tests for simple constructors like these is usually considered overkill, so lets move on to testing
the deposit method. This should be simple – construct a test fixture, call the deposit method, and
determine if the result is as expected. With the Account class file selected, create a a test case usingt the
JUnit TestCase Wizard as shown in Fig 2.

Fig 2

 - 5 - Last Modified: 10/18/2004

The first time you create a JUnit class, you will be prompted to add the junit.jar file to the project's
build path. Click Yes (see Fig. 3).

Fig 3

The wizard then gives a template with several fields already filled in. For this test case, the default class
name (AccountTest) has been changed to AccountDepositTest to better reflect the method being
tested. We've also checked the box to add a setUp method to the test class.

Fig 4

Next select the deposit method so that Eclipse will generate a test method stub for it, and click Finish.

 - 6 - Last Modified: 10/18/2004

Fig 5

 Fig 6 shows the test case skeleton generated by Eclipse.

Fig 6

 - 7 - Last Modified: 10/18/2004

Next, add a test fixture - in this case, an Account. The account object is initialized in the setUp method.

Fig 7

Note the extra parameter in the assertEquals method call that represents the error tolerance for
comparing two double values.

Now run the test case by selecting Run As -> JUnit Test (see Fig. 8).

This opens a JUnit view which shows that the test failed (Fig. 9). This is no surprise, since the body of the
deposit method has not yet been implemented.

 - 8 - Last Modified: 10/18/2004

Fig 8

Fig 9

For illustration, let's do the minimal work needed to make this test work – add an assignment statement to
deposit that stores 500 in balance.

 - 9 - Last Modified: 10/18/2004

Fig 10

Then run the test again by saving the modified Account class and clicking the Rerun Last Test button
(since JUnit loads the latest class files, the most recently compiled updates are always used). This fixes the
problem, at least for the test in question.

Fig 11

So now let's try another test.

Fig 12

The name of the existing test was changed to testDeposit300 to better reflect the action being
performed. Then copy and paste the method and make appropriate changes to test a deposit of 400. Saving
AccountDepositTest.java and rerunning the last test reveals that the implementation of deposit
only works for a deposit that results in a balance of 500. So let's fix the deposit method to do the right
thing.

 - 10 - Last Modified: 10/18/2004

Fig 13

Save the change and rerun the last test. Success!

Fig 14

Sidebar : Debugging in Unit Tests

Double clicking on the failure trace line in the JUnit view will open the test case in an editor, and position the
cursor in the test method where the failure occurred. But this does not give any information about the actual
method where the problem lies. Occasionally, debugging is the best action to take. This is simple to do in
Eclipse. First set a breakpoint (double click in the margin on the line where the breakpoint should be set).

Fig S1

 - 11 - Last Modified: 10/18/2004

Then from the Debug menu, select Debug As -> JUnit Test. This will open a Debug perspective, pausing
execution at the breakpoint. Now all the usual debugging facilities are available, such as stepping into the
method where the problem occurs.

Fig S2

End of Sidebar

At this point, adding a boundary case (deposit 0) will round out the test case for deposit. Note that a test
with a negative amount should be added to see how the method reacts to invalid data. We'll examine this
later.

Now let's test and implement the withdraw method. It seems similar to deposit, so as a first attempt,
we'll add a statement that subtracts amount from the balance. We'll also add another test case with a test
for withdrawing 150 from an Account with a balance of 200. Success!

 - 12 - Last Modified: 10/18/2004

Fig 15

Note that the class invariant requires a non-negative Account balance. The implication for withdraw is that
amount must be ≤ balance. We'd better test this by attempting to withdraw more than the balance in the
account. The correct action in this case would be to reject the transaction and leave the balance unchanged.

 - 13 - Last Modified: 10/18/2004

Fig 16

It is no surprise that the test fails.

 - 14 - Last Modified: 10/18/2004

The preferred fix for this problem is to have the withdraw method throw an exception if the parameter does
not meet the method's preconditions. Making the appropriate modifications, and rerunning the test results in
an error. This indicates that the withdraw method did throw an exception as shown in the stack trace.

Fig 17

While this error does indicate the test succeeded, we don't want the red bar. Rewriting the test with the call to
withdraw in a try-catch block puts the method call in the proper context. The call to fail will occur only if an
exception was not thrown when it should have occurred.

 - 15 - Last Modified: 10/18/2004

Fig 18

Now adding a similar exception to deposit and a corresponding test will complete the development of these
two methods.

Note also that the constructor should also throw an exception if an attempt is made to create an account with
a negative balance. The class should be appropriately modified, and a test written to verify that it does in fact
work.

Sidebar : Running individual test methods

It is possible to run any test method individually from the context menu in the Outline view. Right click on
the method to be run, select Run -> JUnit Test and only the selected method will be executed.

 - 16 - Last Modified: 10/18/2004

Fig S3

End of Sidebar

Test Suite

A group of related test can be aggregated into a test suite and run together. This is done in Eclipse by using
the New -> Other wizard and selecting JUnit Test Suite (Fig. 19).

The wizard will use the default name AllTests for the class and select all classes in the project with names
ending in Test.

 - 17 - Last Modified: 10/18/2004

Fig 19

Fig 20

 - 18 - Last Modified: 10/18/2004

Now suppose we extend the Account class so that an attempt to withdraw an amount greater than the
current balance will result in an overdraft fee being charged against the account.

Fig 21

The following test case verifies that the withdraw method works properly.

 - 19 - Last Modified: 10/18/2004

Fig 22

Repeating the New wizard to create an AllTests test suite will update the test suite to include the
OverdraftAccountTest case. Running the updated test suite verifies that the new implementation has
not broken any of the existing code.

Another test not included here is one to examine the result of attempting to withdraw an excess amount from
an account with balance less than OVERDRAFT_FEE. This would result in a negative balance, but this would
violate the class invariant. An appropriate solution for this case is beyond the scope of this discussion, but it
does point out how unit testing can help to detect such situations early in the development cycle.

Organizing Files

Larger projects can benefit from the organization provided by using packages. In particular, it is sometimes
recommended that test files be stored in a separate package from the source code to make deployment of the
project easier. It is easier to exclude test code from JAR files when they are stored in separate directories.
The following shows a possible configuration that separates testing code from implementation code.

 - 20 - Last Modified: 10/18/2004

Fig 23

The next figure shows the hierarchy tab of the JUnit view for this package structure.

Fig 24

Summary

 - 21 - Last Modified: 10/18/2004

Follow the Extreme Programming technique of code a little, test a little. Some suggestions are to run tests
after every 10 minutes of coding.

Use and develop specifications and tests together, but independent of any application code. This will improve
the reusability of the module under development, and encourage refactoring to improve overall quality.

Exercises

Design a test plan and implement unit test cases for the Queue class (array implementation w/wraparound)
Find and correct any errors detected in the implementation.

Sidebar : Differences between Eclipse 2.1.x and 3.0.

The Eclipse 2.1.x JUnit Test class wizard does not have a prompt for adding junit.jar to the project
class path. Before writing JUnit tests, it is necessary to open the project's Property page, and in the Java
Build Path select the Libraries tab, and add junit.jar (found in the junit.org plug-in directory).

End of Sidebar

References:

Beck, Kent Test-Driven Development By Example, Addison-Wesley, 2003.
Daum, Berthold Eclipse 2 for Java Developers, John Wiley & Sons, 2003.

Fowler, Martin Refactoring: Improving the Design of Existing Code, Addison-Wesley, 2000.

Gallardo, David, Burnette, Ed, and McGovern, Robert, Hightower, Richard and Lesiecki, Nicholas Java
Tools for eXtreme Programming: Mastering Open Source Tools, Including Ant, JUnit, and Cactus, John
Wiley & Sons, 2002.

JUnit Web Site, www.junit.org

Link, Johannes Unit Testing in Java, Morgan Kaufman Publishers, 2002.

Massol, Vincent JUnit in Action, Manning Publications, 2004.

Olan, Michael " Unit Testing: Test Early, Test Often", Journal of Computing Sciences in Colleges, October
2003.

Prohorenko, Alexander and Prohorenko, Olexiy "Using JUnit With Eclipse IDE", O'Reilly on Java.com,
http://www.onjava.com/lpt/a/4524, February 2004.

"Writing and running JUnit tests" in Eclipse Help.

