## Trees

CSIS 2226

## Trees



## Trees?

- Not those, but sort of....
- Our trees will have roots just like those
- Our trees will have branches just like those
- Our trees will have leaves just like those


## Tree: defined

- Definition: A tree is a connected undirected graph with no simple circuits.
- Theorem: An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices


So, what is a tree?

A tree is a connected undirected graph with no simple circuits

A tree is a connected graph with $n-1$ edges

A tree is a graph such that there is a unique simple path between any pair of vertices

All of the above say the same thing!

## An unrooted tree



Kinds of nodes/vertices in a tree

- the root (this tree doesn't have one)
- leaf nodes (there are 6 here)
- interior nodes (there are 5 here)


## A Rooted tree



A rooted tree has one vertex designated as the root and every other edge is directed away from the root

The above tree is a binary tree
We put the root at the top by convention


The parent of $H$ is $B$
The sibling of $G$ is $J$
The ancestors of $I$ are $E, K$, and $A$
$C$ is a child of $K$
The descendants of $B$ are $F, H$, and $D$
$A$ is the root, and has no ancestors
The leaf nodes have no children
Again, the tree is a binary tree

The height of a binary tree

-The height of a leaf node is 0

- The height of an empty tree is 0
-The height of a node $x$ is $1+\max (h e i g h t(l e f t(x))$, height $(\operatorname{right}(x))$ )

Note: I've assumed that we have functions left, right, isNode, and isLeaf

## Traversals



If you've got some structure one of the $1^{\text {st }}$ things you want to be able to do is to traverse it!

Again, we'll stick to rooted binary trees

We have 3 traversals
2. preorder
3. inorder
4. postorder


## $A, B, F, H, D, K, C, J, G, E, I$

```
inorder(x)
    if isNode(x)
    then inorder(left(x)),
    print(x),
    inorder(right(x))
```

    \(F, B, D, H, A, J, C, G, K, E, I\)
    postorder $(x)$
if is $\operatorname{Node}(x)$
then $\operatorname{print}(x)$,
postorder(left(x)),
postorder(right $(x))$
$F, D, H, B, J, G, C, I, E, K, A$


A walk round the tree

- if we "print" on $1^{\text {st }}$ visit we get preorder
- if we "print" on $2^{\text {nd }}$ visit we get inorder
- if we "print" on last visit we get postorder

```
1. Preorder: ICBEHDAFG
2. Inorder: EBHCIFADG
3. Postorder: EHBCFAGDI
```

- (a) I is the root (from 1)
-(b) $E, B, H$, and $C$ are to the left of $I$ (from (a) and 2)
- (c) F, A, D, and G are to the right of I (from (a) 2)
- (d) $C$ is the first left node of I (from (c) and 1)
- (e) $D$ is the first right node of I (from (c) and 1)
- $f$ ) possibly we have
- $B$ to the left of $C$,
- $E$ to the left of $B$,
- H to the right of $B$... as this satisfies 1 and 2
- (g) F and $A$ are left of $D$, and $G$ is right of $D$ (from 2)
- (h) F must be left of $A$ (from 1)
- (j) the tree is now fully defined

Determine the tree from its traversals

1. Preorder: ICBEHDAFG
2. Inorder: EBHCIFADG
3. Postorder: EHBCFAGDI


How would you represent a tree in a computer?


Might have a btree data structure with attributes

- data
- the actual information in a node
- left
- the btree to the left, or nil
- right
- the btree to the right, or nil



Might use a 1d array, giving parent of a node

$$
\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
-1 & 1 & 11 & 8 & 11 & 2 & 3 & 2 & 3 & 5 & 1
\end{array}
$$



An expression

$$
(6 * 8)+((9+7) * 5)
$$

What would a preorder, inorder and postorder traversal of this tree looklike?

