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Trees?

Not those, but sort of....
Our trees will have roots just like those

Our trees will have branches just like
those

Our trees will have leaves just like those




Tree: defined

 Definition: A tree is a connected
undirected graph with no simple circuits.

* Theorem: An undirected graph is a tree if
and only if there is a unique simple path
between any two of its vertices



So, what is a tree?

A tree is a connected undirected graph with no simple circuits

A free is a connected graph with n-1 edges

A tree is a graph such that there is a unique simple path
between any pair of vertices

All of the above say the same thing!



An unrooted tree

Kinds of nodes/vertices in a tree

* the root (this tree doesn't have one)
* leaf nodes (there are 6 here)
* interior nodes (there are 5 here)



A Rooted tree

A rooted tree has one vertex designated as the root and every
other edge is directed away from the root

The above tree is a binary tree
We put the root at the top by convention
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The parent of H is B

The sibling of G is J

The ancestors of I are E, K, and A

C is a child of K

The descendants of B are F, H, and D
A is the root, and has no ancestors

The leaf nodes have no children
Again, the tree is a binary tree



The height of a binary tree
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*The height of a leaf node is O
*The height of an empty treeis O
*The height of a node x is 1 + max(height(left(x)),height(right(x)))

Note: I've assumed that we have functions left, right, isNode, and isLeaf



Traversals
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If you've got some structure one of the 1s* things you want to
be able to do is to traverse it!

Again, we'll stick to rooted binary trees We have 3 traversals
2. preorder

3. inorder
4. postorder



Traversals /@\
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preorder(x) @ m d

if isNode(x) @

then print(x), 4 \ pN
preorder(left(x)), Q
preorder(right(x)) @ @ @
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postorder(x)
inorder(x) if isNode(x)
if isNode(x) then print(x),
then inorder(left(x)), postorder(left(x)),
print(x), postorder(right(x))
inorder(right(x))
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A walk round the free

+ if we "print” on 1st visit we get preorder

- if we "print” on 2™ visit we get inorder

» if we "print” on last visit we get postorder



Determine the tree from its traversals

1. Preorder: ICBEHDAFG
2. Inorder: EBHCIFADG
3. Postorder: EHBCFAGDI

* (@) I is the root (from 1)
- (b) E, B, H, and C are to the left of I (from (a) and 2)
*(c)F, A, D, and G are to the right of I (from (a) 2)
* (d) Cis the first left node of I (from (c) and 1)
* (e) D is the first right node of I (from (c) and 1)
* (f) possibly we have
* B to the left of C,
* E to the left of B,
* H to the right of B ... as this satisfies 1 and 2
* (g) F and A are left of D, and G is right of D (from 2)
* (h) F must be left of A (from 1)
* (j) the tree is now fully defined



Determine the tree from its traversals

1. Preorder: ICBEHDAFG
2. Inorder: EBHCIFADG
3. Postorder: EHBCFAGDI



How would you represent a tree in a computer?
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Might have a btree data structure with attributes

* data

- the actual information in a node
- left

* the btree to the left, or nil
* right

* the btree to the right, or nil
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data left
1 2
2 6
3 9
4 -1
5 -1
6 -1
7 -1
8 4
9 -1
10 -1
11 3

right
11

Might use a 2d array
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Might use a 1d array , giving parent of a node

1 2 3 4 5 6 7 8 9 10 11
-1 1 11 8 11 2 3 2 3 5 1
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(6*8)+((9+7)*5)

What would a preorder, inorder and postorder traversal of this tree looklike?



