Trees

CSIS 2226

Trees?

Not those, but sort of....
Our trees will have roots just like those

Our trees will have branches just like
those

Our trees will have leaves just like those

Tree: defined

 Definition: A tree is a connected
undirected graph with no simple circuits.

* Theorem: An undirected graph is a tree if
and only if there is a unique simple path
between any two of its vertices

So, what is a tree?

A tree is a connected undirected graph with no simple circuits

A free is a connected graph with n-1 edges

A tree is a graph such that there is a unique simple path
between any pair of vertices

All of the above say the same thing!

An unrooted tree

Kinds of nodes/vertices in a tree

* the root (this tree doesn't have one)
* leaf nodes (there are 6 here)
* interior nodes (there are 5 here)

A Rooted tree

A rooted tree has one vertex designated as the root and every
other edge is directed away from the root

The above tree is a binary tree
We put the root at the top by convention

& ® -
& @ @ ©

The parent of H is B

The sibling of G is J

The ancestors of I are E, K, and A

C is a child of K

The descendants of B are F, H, and D
A is the root, and has no ancestors

The leaf nodes have no children
Again, the tree is a binary tree

The height of a binary tree
7 Q
® P 4 e
SN N
® @ © ©

*The height of a leaf node is O
*The height of an empty treeis O
*The height of a node x is 1 + max(height(left(x)),height(right(x)))

Note: I've assumed that we have functions left, right, isNode, and isLeaf

Traversals

& ® .
& @ @ ©

If you've got some structure one of the 1s* things you want to
be able to do is to traverse it!

Again, we'll stick to rooted binary trees We have 3 traversals
2. preorder

3. inorder
4. postorder

Traversals /@\
& N
preorder(x) @ m d

if isNode(x) @

then print(x), 4 \ pN
preorder(left(x)), Q
preorder(right(x)) @ @ @

ABFHDKCJIGET

postorder(x)
inorder(x) if isNode(x)
if isNode(x) then print(x),
then inorder(left(x)), postorder(left(x)),
print(x), postorder(right(x))
inorder(right(x))

FBDHAJTCGKELI FDHBJGCIEKA

& B -
@/ /BN\OND

A walk round the free

+ if we "print” on 1st visit we get preorder

- if we "print” on 2™ visit we get inorder

» if we "print” on last visit we get postorder

Determine the tree from its traversals

1. Preorder: ICBEHDAFG
2. Inorder: EBHCIFADG
3. Postorder: EHBCFAGDI

* (@) I is the root (from 1)
- (b) E, B, H, and C are to the left of I (from (a) and 2)
*(c)F, A, D, and G are to the right of I (from (a) 2)
* (d) Cis the first left node of I (from (c) and 1)
* (e) D is the first right node of I (from (c) and 1)
* (f) possibly we have
* B to the left of C,
* E to the left of B,
* H to the right of B ... as this satisfies 1 and 2
* (g) F and A are left of D, and G is right of D (from 2)
* (h) F must be left of A (from 1)
* (j) the tree is now fully defined

Determine the tree from its traversals

1. Preorder: ICBEHDAFG
2. Inorder: EBHCIFADG
3. Postorder: EHBCFAGDI

How would you represent a tree in a computer?

-
© ONRG

Might have a btree data structure with attributes

* data

- the actual information in a node
- left

* the btree to the left, or nil
* right

* the btree to the right, or nil

O &0 39 O »n B~ W N =

data left
1 2
2 6
3 9
4 -1
5 -1
6 -1
7 -1
8 4
9 -1
10 -1
11 3

right
11

Might use a 2d array

ol

ol

NG

(5)

o

- m
@ P g e
SN TN
@ e ©
Might use a 1d array , giving parent of a node

1 2 3 4 5 6 7 8 9 10 11
-1 1 11 8 11 2 3 2 3 5 1

© oo
N
An expression @ @

(6*8)+((9+7)*5)

What would a preorder, inorder and postorder traversal of this tree looklike?

