Module #21 - Relations

8.5 Equivalence Relations8.6 Partial Orderings

Rosen 6th ed., Ch. 8

§8.5: Equivalence Relations

- An *equivalence relation* (e.r.) on a set *A* is simply any binary relation on *A* that is reflexive, symmetric, and transitive.
 - -E.g., = itself is an equivalence relation.
 - For any function $f:A \rightarrow B$, the relation "have the same *f* value", or $=_f:= \{(a_1,a_2) | f(a_1)=f(a_2)\}$ is an equivalence relation,
 - *e.g.*, let *m*= "mother of" then =_{*m*} = "have the same mother" is an e.r.

Module #21 - Relations

Equivalence Relation Examples

- "Strings *a* and *b* are the same length."
- "Integers *a* and *b* have the same absolute value."
- "Real numbers *a* and *b* have the same fractional part." (*i.e.*, $a b \in \mathbb{Z}$)
- "Integers *a* and *b* have the same residue modulo *m*." (for a given *m*>1)

Equivalence Classes

- Let *R* be any equiv. rel. on a set *A*.
- The *equivalence class* of *a*, $[a]_R :\equiv \{ b \mid aRb \}$ (optional subscript *R*)
 - It is the set of all elements of A that are "equivalent" to a according to the eq.rel. R.
 - Each such *b* (including *a* itself) is called a *representative* of $[a]_R$.
- Since f(a)=[a]_R is a function of a, any equivalence relation R can be defined using
 aRb :≡ "a and b have the same f value", given f.

Module #21 - Relations

Equivalence Class Examples

- "Strings *a* and *b* are the same length."
 [*a*] = the set of all strings of the same length as *a*.
- "Integers a and b have the same absolute value."
 [a] = the set {a, -a}
- "Real numbers *a* and *b* have the same fractional part (*i.e.*, $a b \in \mathbb{Z}$)."

 $- [a] = \text{the set } \{\dots, a-2, a-1, a, a+1, a+2, \dots\}$

 "Integers a and b have the same residue modulo m." (for a given m>1)

 $- [a] = \text{the set } \{\dots, a-2m, a-m, a, a+m, a+2m, \dots\}$

§8.6: Partial Orderings

- A relation *R* on *A* is called a *partial ordering* or *partial order* iff it is reflexive, antisymmetric, and transitive.
 - We often use a symbol looking something like ≼ (or analogous shapes) for such relations.
 - Examples: \leq , \geq on real numbers, \subseteq , \supseteq on sets.
 - Another example: the divides relation | on \mathbf{Z}^+ .
 - Note it is not necessarily the case that either $a \leq b$ or $b \leq a$.
- A set A together with a partial order ≤ on A is called a *partially ordered set* or *poset* and is denoted (A, ≤).