Module #21 - Relations

8.3 Representing Relations

Rosen 6th ed., Ch. 8

Module #21 - Relations

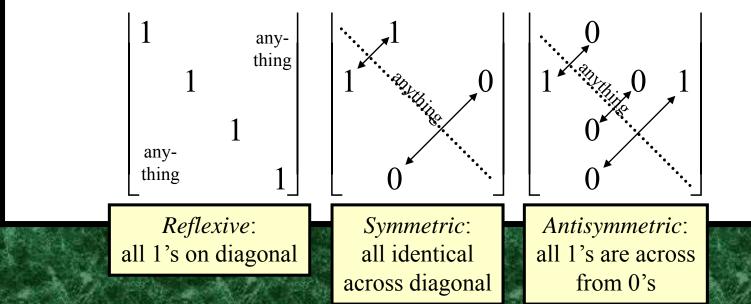
§8.3: Representing Relations

- Some ways to represent *n*-ary relations:
 - With an explicit list or table of its tuples.
 - With a function from the domain to $\{T, F\}$.
 - Or with an algorithm for computing this function.
- Some special ways to represent binary relations:
 - With a zero-one matrix.
 - With a directed graph.

Using Zero-One Matrices

- To represent a binary relation $R:A \times B$ by an $|A| \times |B|$ 0-1 matrix $\mathbf{M}_R = [m_{ij}]$, let $m_{ij} = 1$ iff $(a_i, b_j) \in R$.
- *E.g.*, Suppose Joe likes Susan and Mary, Fred likes Mary, and Mark likes Sally.
- Then the 0-1 matrix representation of the relation Likes:Boys×Girls relation is:

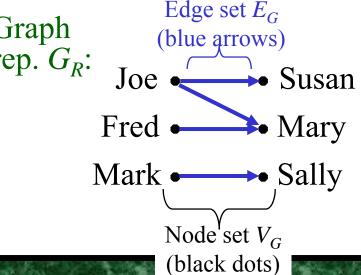
	Susan	Mary	Sally
Joe	[1	1	0
Fred	0	1	0
Mark	0	0	1


Properties of Relations

- Reflexivity: A relation R on A x A is reflexive if for all $a \Box A$, $(a,a) \Box R$.
- Symmetry: A relation R on AxA is symmetric if $(x, y) \square R$ implies $(y, x) \square R$.
- Anti-symmetry:

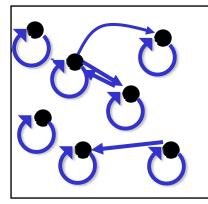
A relation on A x A is anti-symmetric if $(a,b) \square R$ implies $(b,a) \square R$. Or a = b.

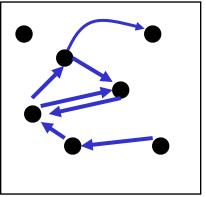
Zero-One Reflexive, Symmetric


- Terms: *Reflexive*, symmetric, and *antisymmetric*.
 - These relation characteristics are very easy to recognize by inspection of the zero-one matrix.

Using Directed Graphs

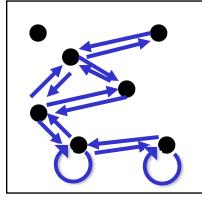
• A directed graph or digraph $G=(V_G, E_G)$ is a set V_G of vertices (nodes) with a set $E_G \subseteq V_G \times V_G$ of edges (arcs, links). Visually represented using dots for nodes, and arrows for edges. Notice that a relation $R:A \times B$ can be represented as a graph $G_R=(V_G=A\cup B, E_G=R)$.

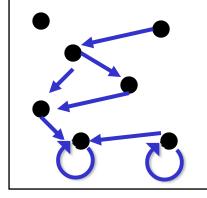

N	Aatrix r	Grap rep. (
		Susan	Mary	Sally	rep.
	Joe	[1	1	0	
	Fred	0	1	0	
	Mark	0	0	1	
				_	



Module #21 - Relations

Digraph Reflexive, Symmetric


It is extremely easy to recognize the reflexive/irreflexive/ symmetric/antisymmetric properties by graph inspection.



Reflexive:Irreflexive:Every nodeNo nodehas a self-looplinks to itself

These are asymmetric & non-antisymmetric

Symmetric: Every link is bidirectional Antisymmetric: No link is bidirectional

These are non-reflexive & non-irreflexive