Module \#21 - Relations

8.3 Representing Relations

Rosen $6^{\text {th }}$ ed., Ch. 8

§8.3: Representing Relations

- Some ways to represent n-ary relations:
- With an explicit list or table of its tuples.
- With a function from the domain to $\{\mathbf{T}, \mathbf{F}\}$.
- Or with an algorithm for computing this function.
- Some special ways to represent binary relations:
- With a zero-one matrix.
- With a directed graph.

Using Zero-One Matrices

- To represent a binary relation $R: A \times B$ by an $|A| \times|B|$ 0-1 matrix $\mathbf{M}_{R}=\left[m_{i j}\right]$, let $m_{i j}=1$ iff $\left(a_{i}, b_{j}\right) \in R$.
- E.g., Suppose Joe likes Susan and Mary, Fred likes Mary, and Mark likes Sally.
- Then the 0-1 matrix representation of the relation Likes:Boys \times Girls relation is:
Joe
Fred

Mark | Susan | Mary | Sally |
| :---: | :---: | :---: |
| $\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ | | |

Properties of Relations

- Reflexivity: A relation R on $\mathrm{A} x \mathrm{~A}$ is reflexive if for all $a \square \mathrm{~A},(a, a) \square \mathrm{R}$.
- Symmetry: A relation R on AxA is symmetric if $(x, y) \square \mathrm{R}$ implies $(y, x) \square \mathrm{R}$.
- Anti-symmetry:

A relation on $\mathrm{A} x \mathrm{~A}$ is anti-symmetric if $(a, b) \square \mathrm{R}$ implies $(b, a) \square \mathrm{R}$. Or $\mathrm{a}=\mathrm{b}$.

Zero-One Reflexive, Symmetric

- Terms: Reflexive, symmetric, and antisymmetric.
- These relation characteristics are very easy to recognize by inspection of the zero-one matrix.

Symmetric: all identical across diagonal
 all 1's are across from 0's

Using Directed Graphs

- A directed graph or digraph $G=\left(V_{G}, E_{G}\right)$ is a set V_{G} of vertices (nodes) with a set $E_{G} \subseteq V_{G} \times V_{G}$ of edges (arcs,links). Visually represented using dots for nodes, and arrows for edges. Notice that a relation $R: A \times B$ can be represented as a graph $G_{R}=\left(V_{G}=A \cup B, E_{G}=R\right)$.

Matrix representation \mathbf{M}_{R} :
Joe
Fred

Mark | Susan | Mary | Sally |
| :---: | :---: | :---: |
| $\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ | | |

Graph rep. G_{R} :
 Mark \longrightarrow Sally

Digraph Reflexive, Symmetric

It is extremely easy to recognize the reflexive/irreflexive/ symmetric/antisymmetric properties by graph inspection.

Reflexive:
Every node has a self-loop links to itself

Symmetric:
Every link is bidirectional

Antisymmetric:
No link is bidirectional

