

- · Last time we saw applications of Boolean logic to circuit design.
 - The basic Boolean operations are AND, OR and NOT. - These operations can be combined to form complex expressions, which can also be directly translated into a hardware circuit.
 - Boolean algebra helps us simplify expressions and circuits. Today well look at a graphical technique for simplifying an expression into a minimal sum of products (MSP) form:

 - There are a minimal number of product terms in the expression. - Each term has a minimal number of literals.
- Circuit-wise, this leads to a *minimal* two-level implementation.

		Tei	minolo	gy: Min	terms
• A mii appe	ntermisa arsexactly	special ' once.	product o	f literals, i	n which each input variable
 A fun appendix 	nction with ar complem	n varia vented o	bleshasi rnot)	2" minterm	s (since each variable can
• A th	ree-variabl	e funct	ion, such	as f(x,y,z),	, has 2³ = 8 minterms:
	×'y'z' ×y'z'	x'y'z xy'z	×'yz' ×yz'	x'yz xyz	
• Each	minterm is	strue fo	or exactl	y one comb	ination of inputs:
	Minterm	Is tru	e when	Shorthan	nd
	x'y'z'	х=0, у	=0, z =0	m _o	
	хyz	×=0, у	=0, z=1	m	
	x'yz'	x=0, y	=1, z=0	m ₂	
	xyz	x=0, y	=1, Z=1	m ₃	
	xy 2 xy' 7	x=1, y-	-0,2-0	m m	
	xyz	x=1. y	1. z=0	m,	
	xýz	x=1, y	1, z=1	m-7	

