### Graphs

**CSIS 2226** 



### 



#### One of these!

#### A Simple Graph

E is set of edges



V = {a,b,c,d,e}
E = {(a,b),(a,d),(b,c),(c,d),(c,e),(d,e)}

#### A Directed Graph

G = (V,E)
V is set of vertices
E is set of directed edges

directed pairs



#### Applications

- computer networks
- telecomm networks
- scheduling (precedence graphs)
- transportation problems
- relationships
- chemical structures
- chemical reactions
- pert networks
- services (sewage, cable, ...)
- WWW
- ...

### Terminology

- Vertex x is *adjacent* to vertex y if (x,y) is in E
  - · c is adjacent to b, d, and e
- The *degree* of a vertex x is the number of edges incident on x
  - $\cdot deg(d) = 3$
  - note: degree aka valency
- The graph has a *degree sequence* 
  - in this case 3,3,2,2,2



### Handshaking Theorem (simple graph)

G = (V,E) 
$$2e = \sum_{v \in V} \deg(v)$$

For an undirected graph G with e edges, the sum of the degrees is 2e

Why?

- An edge (u,v) adds 1 to the degree of vertex u and vertex v
- Therefore edge(u,v) adds 2 to the sum of the degrees of G
- $\boldsymbol{\cdot}$  Consequently the sum of the degrees of the vertices is 2e



Challenge: Draw a graph with degree sequence 2,2,2,1

#### Handshaking Theorem (a consequence, for simple graphs)

There is an even number of vertices of odd degree



*u*∈*OddDegVertices* 



deg(d) = 3 and deg(c) = 3

Is there an algorithm for drawing a graph with a given degree sequence?

Yes, the Havel-Hakimi algorithm

### The Havel-Hakimi Algorithm

Take as input a degree sequence S and determine if that sequence is graphical That is, can we produce a graph with that degree sequence? Assume the degree sequence is S

$$S = d_1, d_2, d_3, \cdots, d_n$$
$$d_i \ge d_{i+1}$$

1. If any  $d_i \ge n$  then fail

2. If there is an odd number of odd degrees then fail

3. If there is a  $d_i < 0$  then fail

4. If all  $d_i = 0$  then report success

5. Reorder S into non - increasing order

6. Let  $k = d_1$ 

7. Remove  $d_1$  from S.

8. Subtract 1 from the first k terms remaining of the new sequence

9. Go to step 3 above

Note: steps 1 and 2 are a pre-process

4. If all  $d_i = 0$  then report success

5. Reorder S into non - increasing order

6. Let  $k = d_1$ 

7. Remove  $d_1$  from S.

8. Subtract 1 from the first k terms remaining of the new sequence

9. Go to step 3 above

5 = 4,3,3,3,1



5 = 4,3,3,3,1

4. If all  $d_i = 0$  then report success

5. Reorder S into non - increasing order

6. Let  $k = d_1$ 

7. Remove  $d_1$  from S.

8. Subtract 1 from the first k terms remaining of the new sequence

9. Go to step 3 above

5 = 4,3,3,3,1



5 = 2,2,2,0

4. If all  $d_i = 0$  then report success

5. Reorder S into non - increasing order

6. Let  $k = d_1$ 

7. Remove  $d_1$  from S.

8. Subtract 1 from the first k terms remaining of the new sequence

9. Go to step 3 above

5 = 4,3,3,3,1



S = 1,1,0

4. If all  $d_i = 0$  then report success

5. Reorder S into non - increasing order

6. Let  $k = d_1$ 

7. Remove  $d_1$  from S.

8. Subtract 1 from the first k terms remaining of the new sequence

9. Go to step 3 above

5 = 4,3,3,3,1



S = 0,0

4. If all  $d_i = 0$  then report success

5. Reorder S into non - increasing order

6. Let  $k = d_1$ 

7. Remove  $d_1$  from S.

8. Subtract 1 from the first k terms remaining of the new sequence

9. Go to step 3 above

5 = 4,3,3,3,1



**Report Success** 

#### 4,4,4,4,1,1,1,1,1,1,1,1,1,1,1

# $C_{4}H_{10}$



Alternatively

#### 4,4,4,4,1,1,1,1,1,1,1,1,1,1,1

 $C_{4}H_{10}$ 



Havel-Hakimi produces the following



The hypothetical hydrocarbon Vinylacetylene

50?

Well, we have demonstrated that the HH algorithm doesn't always produce A connected graph.

We have also shown that by representing molecules as simple graphs and using an algorithm to model this graph we might get some unexpected results, maybe something new!

### (Some) Special Graphs



Cliques





### Wheels





#### **Bipartite Graphs**

#### Vertex set can be divided into 2 disjoint sets

$$V = V_1 \cup V_2$$

 $(v,w) \in E \longrightarrow (v \in V_1 \land w \in V_2) \oplus (v \in V_2 \land w \in V_1)$ 



#### Other Kinds of Graphs

multigraphs

- may have multiple edges between a pair of vertices
- in telecomms, these might be redundant links, or extra capacity
- pseudographs
  - a multigraphs, but edges (v,v) are allowed
- hypergraph
  - hyperedges, involving more than a pair of vertices

## A Non-Simple Graph

**Definition 2.** In a multigraph G = (V, E)two or more edges may connect the same pair of vertices.

# A Multigraph

#### THERE CAN BE MULTIPLE TELEPHONE LINES BETWEEN TWO COMPUTERS IN THE NETWORK.



Los Angeles

## Another Non-Simple Graph

**Definition 3.** In a pseudograph G = (V, E)two or more edges may connect the same pair of vertices, and in addition, an edge may connect a vertex to itself.



# Two edges are called *multiple or parallel edges* if they connect the same two distinct vertices.

### A Pseudograph

#### THERE CAN BE TELEPHONE LINES IN THE NETWORK FROM A COMPUTER TO ITSELF (for diagnostic use).





An edge is called a *loop* if it connects a vertex to itself.

### **Undirected Graphs**



#### **Directed Graphs**

- (u,v) is a directed edge
- u is the initial vertex
- v is the terminal or end vertex



the in-degree of a vertex
 number of edges with v as terminal vertex
 deg<sup>+</sup>(v)

- the out-degree of a vertex
  - number of edges with v as initial vertex

 $\deg^{-}(v)$ 

#### **Directed Graphs**

- (u,v) is a directed edge
- u is the initial vertex
- v is the terminal or end vertex

$$(\mathbf{u})$$

$$\sum_{v \in V} \deg^+(v) = \sum_{v \in V} \deg^-(v) = |E|$$

### Each directed edge (v,w) adds 1 to the out-degree of one vertex and adds 1 to the in-degree of another
## A Directed Graph

**Definition 4.** In a directed graph G = (V, E)the edges are ordered pairs of (not necessarily distinct) vertices.

## A Directed Graph

#### SOME TELEPHONE LINES IN THE NETWORK MAY OPERATE IN ONLY ONE DIRECTION . Those that operate in two directions are represented by pairs of edges in opposite directions.



Los Angeles

# A Directed Multigraph

Definition 5. In a directed multigraph G = (V, E)the edges are ordered pairs of (not necessarily distinct) vertices, and in addition there may be multiple edges.

## A Directed Multigraph

#### THERE MAY BE SEVERAL ONE-WAY LINES IN THE SAME DIRECTION FROM ONE COMPUTER TO ANOTHER IN THE NETWORK.



Los Angeles

#### Types of Graphs

| TYPE                | EDGES      | MULTIPLE EDGES<br>ALLOWED? | LOOPS<br>ALLOWED? |  |
|---------------------|------------|----------------------------|-------------------|--|
| Simple graph        | Undirected | NO                         | NO                |  |
| Multigraph          | Undirected | YES                        | NO                |  |
| Pseudograph         | Undirected | YES                        | YES               |  |
| Directed graph      | Directed   | NO                         | YES               |  |
| Directed multigraph | Directed   | YES                        | YES               |  |

Definition 1. The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.



Definition 1. The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.



Definition 1. The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.





#### Find the degree of all the other vertices. $deg(a) \quad deg(c) \quad deg(f) \quad deg(g)$



#### Find the degree of all the other vertices. deg(a) = 2 deg(c) = 4 deg(f) = 3 deg(g) = 4



Find the degree of all the other vertices. deg(a) = 2 deg(c) = 4 deg(f) = 3 deg(g) = 4TOTAL of degrees = 2 + 4 + 3 + 4 + 6 + 1 + 0 = 20



Find the degree of all the other vertices.

deg(a) = 2 deg(c) = 4 deg(f) = 3 deg(g) = 4

TOTAL of degrees = 2 + 4 + 3 + 4 + 6 + 1 + 0 = 20



#### New Graphs from Old?

We can have a subgraph

$$G = (V, E)$$
$$H = (W, F)$$
$$W \subseteq V$$
$$F \subseteq E$$

We can have a union of graphs

$$G_{1} = (V_{1}, E_{1})$$

$$G_{2} = (V_{2}, E_{2})$$

$$G_{3} = G_{1} \cup G_{2}$$

$$G_{3} = (V_{1} \cup V_{2}, E_{1} \cup E_{2})$$

# Subgraph

# **Definition 6.** A subgraph of a graph G = (V, E) is a graph H = (W, F) where $W \subseteq V$ and $F \subseteq E$ .

# C<sub>5</sub> is a subgraph of K<sub>5</sub>







# Union

Definition 7. The union of 2 simple graphs  $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$  is the simple graph with vertex set  $V = V_1 \cup V_2$  and edge set  $E = E_1 \cup E_2$ . The union is denoted by  $G_1 \cup G_2$ .



Representing a Graph (Rosen 7.3, pages 456 to 463)

Adjacency Matrix: a 0/1 matrix A

$$(i, j) \in E \leftrightarrow a_{i, j} = 1$$

NOTE: A is symmetric for simple graphs!

$$(i, j) \in E \leftrightarrow a_{i,j} = 1 = a_{j,i}$$

NOTE: simple graphs do not have loops (v,v)

$$\forall i(a_{i,i}=0)$$

#### Representing a Graph (Rosen 8.3)



|          |   | a | b | С | d | e | f | g |
|----------|---|---|---|---|---|---|---|---|
|          | a | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
|          | b | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| <b>A</b> | С | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| A =      | d | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
|          | е | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
|          | f | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
|          | g | 1 | 1 | 0 | 0 | 1 | 1 | 0 |

 $A^2$ 

What's that then?

#### Adjacency Matrix

A simple graph G = (V, E) with n vertices can be represented by its adjacency matrix, A, where entry  $a_{ij}$  in row *i* and column *j* is

$$\mathbf{a}_{ij} = \begin{cases} 1 & \text{if } \{ \mathbf{v}_i, \mathbf{v}_j \} \text{ is an edge in } \mathbf{G}, \\ 0 & \text{otherwise.} \end{cases}$$

b f d

 $W_5$ 

This graph has 6 vertices a, b, c, d, e, f. We can arrange them in that order.



There are edges from a to b, from a to e, and from a to f



There are edges from b to a, from b to c, and from b to f



There are edges from c to b, from c to d, and from c to f



COMPLETE THE ADJACENCY MATRIX ...



Notice that this matrix is symmetric. That is  $a_{ij} = a_{ji}$  Why?

#### Adjacency Matrices for pseudo graph

• Matrix A=[*a<sub>ij</sub>*], where *a<sub>ij</sub>* is the number of edges that are associated to {*v<sub>i</sub>*, *v<sub>j</sub>*}



## Adjacency Lists

• A table with 1 row per vertex, listing its adjacent vertices.



|        | Adjacent            |
|--------|---------------------|
| Vertex | Vertices            |
| a      | <i>b</i> , <i>c</i> |
| b      | a, c, e, f          |
| С      | a, b, f             |
| d      |                     |
| е      | b                   |
| f      | <i>c</i> , <i>b</i> |

### Directed Adjacency Lists

• 1 row per node, listing the terminal nodes of each edge incident from that node.



| node | Terminal nodes |
|------|----------------|
| 0    | 3              |
| 1    | 0, 2, 4        |
| 2    | 1              |
| 3    |                |
| 4    | 0,2            |

#### Incidence matrices

• Matrix  $\mathbf{M} = [m_{ij}]$ , where  $m_{ij}$  is 1 when edge  $e_j$  is incident with  $v_i$ , 0 otherwise



#### Isomorphism (Rosen 560 to 563)

Are two graphs G1 and G2 of equal form?

- That is, could I rename the vertices of G1 such that the graph becomes G2
- Is there a bijection f from vertices in V1 to vertices in V2 such that
  - if (a,b) is in E1 then (f(a),f(b)) is in E2

So far, best algorithm is exponential in the worst case

There are necessary conditions

- V1 and V2 must be same cardinality
- E1 and E2 must be same cardinality
- · degree sequences must be equal
  - what's that then?

Are these graphs isomorphic?







How many possible bijections are there?

Is this the worst case performance?

Are these graphs isomorphic?







How many bijections? 1234,1243,1324,1342,1423,1432 2134,2143, ...

4! = 4.3.2.1 = 24

...

#### Are these graphs isomorphic?



#### What might the search process look like that constructs the bijection?

#### Connectivity

A Path of length n from v to u, is a sequence of edges that take us from u to v by traversing n edges.

A path is *simple* if no edge is repeated

A circuit is a path that starts and ends on the same vertex

An undirected graph is connected if there is a path between every pair of distinct vertices

#### Connectivity



 $G_1 = (\{a, b, c, d\}, \{(a, b), (a, c), (b, c), (c, d)\})$ 



This graph has 2 components
### Connectivity



c is a cut vertex (d,c) is a cut edge

 $G = (\{a, b, c, d\}, \{(a, b), (a, c), (b, c), (c, d)\})$ 

A cut vertex v, is a vertex such that if we remove v, and all of the edges incident on v, the graph becomes disconnected

We also have a *cut edge*, whose removal disconnects the graph

#### Euler Path (the Konigsberg Bridge problem)

Is it possible to start somewhere, cross all the bridges once only, and return to our starting place?

Leonhard Euler 1707-1783)



Is there a simple circuit in the given multigraph that contains every edge?

## Fun with Paths in Graphs

- "6 Degrees of Kevin Bacon Game"
  - Given a graph where:
    - V = { set of all actors and actresses }
    - E = { (a, b) | a,b ∈ V and (∃m ∈Movies, a appeared in m and b appeared in m)}
  - Given an actor or actress A, can you find a path of length 6 or less from A to Kevin Bacon?

# Slightly Less Fun Version (unless you're a mathematician)

- The Erdos Number:
  - Given a graph where
    - V = { the set of all mathematicians and scientists from fields closely related to mathematics}
    - E = { (a,b) | a,b ∈ V and "a coauthored an article, paper, or other scholarly work with b"}
  - Given a mathematician (or scientist from a field closely related to math) A, what's the length of the shortest path you can find from A to Paul Erdos?

## A few Erdos numbers

- A few famous scientists
  - Einstein: 2
  - Schrodinger: 8
  - John Nash: 4
- Another example (I was procrastinating one day while a grad student):
  - Cicirello: 4
  - − Cicirello → Regli → Shokoufandeh →
    Szemerédi → Erdös





#### Euler Path (the Konigsberg Bridge problem)





#### Is there a simple circuit in the given multigraph that contains every edge?

An Euler circuit in a graph G is a simple circuit containing every edge of G. An Euler path in a graph G is a simple path containing every edge of G.

#### Euler Circuit & Path

Necessary & Sufficient conditions

every vertex must be of even degree

- if you enter a vertex across a new edge
- you must leave it across a new edge

A connected multigraph has an Euler circuit if and only if all vertices have even degree

The proof is in 2 parts (the biconditional) The proof is in the book

#### Hamilton Paths & Circuits

Given a graph, is there a circuit that passes through each vertex once and once only?

Given a graph, is there a path that passes through each vertex once and once only?

Easy or hard?

Due to Sir William Rowan Hamilton (1805 to 1865)

#### Hamilton Paths & Circuits





Is there an HC?

HC is an instance of TSP!

#### Connected?

Is the following graph connected?

### $G = (\{a, b, c, d, e, f, g\}, \{(a, b), (b, c), (b, d), (c, d), (g, e), (e, f), (f, g)\})$

Draw the graph

What kind of algorithm could we use to test if connected?

#### Connected?

 $G = (\{a, b, c, d, e, f, g\}, \{(a, b), (b, c), (b, d), (c, d), (g, e), (e, f), (f, g)\})$ 

- $\cdot$  (0) assume all vertices have an attribute visited(v)
- (1) have a stack S, and put on it any vertex v
- $\cdot$  (2) remove a vertex v from the stack S
- (3) mark v as visited
- $\cdot$  (4) let X be the set of vertices adjacent to v
- $\cdot$  (5) for w in X do
  - $\cdot$  (5.1) if w is unvisited, add w to the top of the stack S
- $\cdot$  (6) if S is not empty go to (2)
- $\cdot$  (7) the vertices that are marked as visited are connected