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A Simple Graph

• G = (V,E)
• V is set of vertices 
• E is set of edges

a e

b

d

c
• V = {a,b,c,d,e}
• E = {(a,b),(a,d),(b,c),(c,d),(c,e),(d,e)}



A Directed Graph

• G = (V,E)
• V is set of vertices 
• E is set of directed edges

• directed pairs

• V = {a,b,c,d,e}
• E = {(a,d),(b,a),(b,c),(c,d),(c,e),(d,c),(d,e)}
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d

c



Applications

• computer networks
• telecomm networks
• scheduling (precedence graphs)
• transportation problems
• relationships
• chemical structures
• chemical reactions
• pert networks
• services (sewage, cable, …)
• WWW
• ...



Terminology

• Vertex x is adjacent to vertex y if (x,y) is in E
• c is adjacent to b, d, and e

• The degree of a vertex x is the number of edges  incident on x
• deg(d) = 3
• note: degree aka valency

• The graph has a degree sequence
• in this case 3,3,2,2,2
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Handshaking Theorem (simple graph)

G = (V,E) ∑
∈

=
Vv

ve )deg(2

For an undirected graph G with e edges, 
the sum of the degrees is 2e

Why?
• An edge (u,v) adds 1 to the degree of vertex u and vertex v
• Therefore edge(u,v) adds 2 to the sum of the degrees of G
• Consequently the sum of the degrees of the vertices is 2e
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• 2e = deg(a) + deg(b) + deg(c) + deg(d) + deg(e)

• = 2 + 2 + 3 + 3 + 2

• = 12 



Challenge: Draw a graph with degree sequence 2,2,2,1



Handshaking Theorem (a consequence, for simple graphs)

There is an even number of vertices of odd degree
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deg(d) = 3 and deg(c) = 3



Is there an algorithm for drawing a graph with a given degree sequence?

Yes, the Havel-Hakimi algorithm



The Havel-Hakimi Algorithm



Take as input a degree sequence S and determine if that sequence is graphical

That is, can we produce a graph with that degree sequence?



Assume the degree sequence is S
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above 3 step  toGo  9.
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S = 2,2,2,0S = 1,1,0Report Success



104HC
4,4,4,4,1,1,1,1,1,1,1,1,1,1



104HC

Alternatively

4,4,4,4,1,1,1,1,1,1,1,1,1,1



244 3HHC +

Havel-Hakimi produces the following

4,4,4,4,1,1,1,1,1,1,1,1,1,1

The hypothetical hydrocarbon Vinylacetylene



So? 

Well, we have demonstrated that the HH algorithm doesn’t always produce
A connected graph. 

We have also shown that by representing molecules as simple graphs and using 
an algorithm to model this graph we might get some unexpected results, maybe 
something new!



(Some) Special Graphs
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Cycles

Wheels



Bipartite Graphs

Vertex set can be divided into 2 disjoint sets

21 VVV ∪=

)()(),( 1221 VwVvVwVvEwv ∈∧∈⊕∈∧∈→∈



Other Kinds of Graphs

• multigraphs 
• may have multiple edges between a pair of vertices
• in telecomms, these might be redundant links, or extra capacity

• pseudographs
• a multigraphs, but edges (v,v) are allowed

• hypergraph
• hyperedges, involving more than a pair of vertices
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Definition 2. In a multigraph G = (V, E)
two or more edges may connect the 
same pair of vertices.  

A Non-Simple Graph
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A Multigraph

San Francisco

Denver

Los Angeles

New York

Chicago

Washington

Detroit

THERE CAN BE MULTIPLE TELEPHONE LINES 
BETWEEN TWO COMPUTERS IN THE NETWORK.



30

Definition 3. In a pseudograph G = (V, E)
two or more edges may connect the 
same pair of vertices, and in addition, 
an edge may connect a vertex to itself. 

Another Non-Simple Graph
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Multiple Edges

San Francisco

Denver

Los Angeles

New York

Chicago
Washington

Detroit

Two edges are called multiple or parallel edges
if they connect the same two distinct vertices.
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A Pseudograph

San Francisco

Denver

Los Angeles

New York

Chicago

Washington

Detroit

THERE CAN BE TELEPHONE LINES IN THE NETWORK
FROM A COMPUTER TO ITSELF (for diagnostic use).
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Loops

San Francisco

Denver

Los Angeles

New York

Chicago

Washington

Detroit

An edge is called a loop
if it connects a vertex to itself.
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Undirected Graphs

pseudographs

simple graphs
multigraphs



Directed Graphs

u
v

• (u,v) is a directed edge
• u is the initial vertex
• v is the terminal or end vertex

• the in-degree of a vertex 
• number of edges with v as terminal vertex

)(deg v+

• the out-degree of a vertex 
• number of edges with v as initial vertex

)(deg v−



Directed Graphs

u
v

• (u,v) is a directed edge
• u is the initial vertex
• v is the terminal or end vertex

Evv
Vv Vv

==∑ ∑
∈ ∈

−+ )(deg)(deg

Each directed edge (v,w) adds 1 to the out-degree of one vertex
and adds 1 to the in-degree of another
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Definition 4. In a directed graph G = (V, E)
the edges are ordered pairs of (not 
necessarily distinct) vertices.  

A Directed Graph
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A Directed Graph

San Francisco

Denver

Los Angeles

New York
Chicago

Washington

Detroit

SOME TELEPHONE LINES IN THE NETWORK
MAY OPERATE IN ONLY ONE DIRECTION .  
Those that operate in two directions are represented 
by pairs of edges in opposite directions.
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Definition 5. In a directed multigraph G = (V, E)
the edges are ordered pairs of (not 
necessarily distinct) vertices, and in addition 
there may be multiple edges.  

A Directed Multigraph



40

A Directed Multigraph

San Francisco

Denver

Los Angeles

New York
Chicago

Washington

Detroit

THERE MAY BE SEVERAL ONE-WAY LINES 
IN THE SAME DIRECTION FROM ONE COMPUTER 
TO ANOTHER IN THE NETWORK.  
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Types of Graphs
TYPE                               EDGES         MULTIPLE EDGES      LOOPS      

ALLOWED?                 ALLOWED?

Simple graph Undirected NO                                  NO

Multigraph Undirected YES                                NO

Pseudograph               Undirected YES                                YES

Directed graph             Directed               NO                                  YES

Directed multigraph Directed              YES                                 YES
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a

Degree of a vertex

Definition 1. The degree of a vertex in an 
undirected graph is the number of edges 
incident with it, except that a loop at a vertex 
contributes twice to the degree of that vertex.

b

g f e

c d
deg( d ) = 1
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a

Degree of a vertex

Definition 1. The degree of a vertex in an 
undirected graph is the number of edges 
incident with it, except that a loop at a vertex 
contributes twice to the degree of that vertex.

b

g f e

c d

deg( e ) = 0
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a

deg( b ) = 6

Degree of a vertex

Definition 1. The degree of a vertex in an 
undirected graph is the number of edges 
incident with it, except that a loop at a vertex 
contributes twice to the degree of that vertex.

b

g f e

c d
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a

deg( b ) = 6

Degree of a vertex

Find the degree of all the other vertices. 

deg( a ) deg( c ) deg( f ) deg( g )

b

g f e

c d
deg( d ) = 1

deg( e ) = 0
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a

deg( b ) = 6

Degree of a vertex

Find the degree of all the other vertices. 

deg( a ) = 2 deg( c ) = 4 deg( f ) = 3 deg( g ) = 4

b

g f e

c d
deg( d ) = 1

deg( e ) = 0
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a

deg( b ) = 6

Degree of a vertex

Find the degree of all the other vertices. 

deg( a ) = 2 deg( c ) = 4 deg( f ) = 3 deg( g ) = 4

TOTAL of degrees = 2 + 4 + 3 + 4 + 6 + 1 + 0 = 20

b

g f e

c d
deg( d ) = 1

deg( e ) = 0
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a

deg( b ) = 6

Degree of a vertex

Find the degree of all the other vertices. 

deg( a ) = 2 deg( c ) = 4 deg( f ) = 3 deg( g ) = 4

TOTAL of degrees = 2 + 4 + 3 + 4 + 6 + 1 + 0 = 20

TOTAL NUMBER OF EDGES = 10

b

g f e

c d
deg( d ) = 1

deg( e ) = 0



New Graphs from Old?

We can have a subgraph
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Definition 6. A subgraph of a graph 

G = (V, E) is a graph H = (W, F) 

where W ⊆ V and F ⊆ E.

Subgraph
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C5 is a subgraph of K5

C5

K5
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Definition 7. The union of 2 simple graphs 
G1 = ( V1 , E1 )  and G2 = ( V2 , E2 ) is the 
simple graph with vertex set V = V1 ∪ V2

and edge set E = E1 ∪ E2 .  The union is 

denoted by G1 ∪ G2  .

Union
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W5 is the union of S5 and C5

C5

W5

S5

a

b

c

e

d

a

c

e

a

b

c

e

d

a

b

c

e

d

f

f



Representing a Graph (Rosen 7.3, pages 456 to 463)

Adjacency Matrix: a 0/1 matrix A

1),( , =↔∈ jiaEji

NOTE: A is symmetric for simple graphs!

ijji aaEji ,, 1),( ==↔∈

NOTE: simple graphs do not have loops (v,v)

)0( , =∀ iiai



Representing a Graph (Rosen 8.3)

0110011
1000100
1001011
0010110
0101000
1011001
1010010

g
f
e
d
c
b
a

gfedcba

A =

a

dg

b

e

c

f

2A What’s that then?
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A simple graph G = (V, E) with n vertices 
can be represented by its adjacency matrix,
A, where entry aij in row i and column j is

1        if  { vi, vj } is an edge in G,
aij =  

0        otherwise.

Adjacency Matrix
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Finding the adjacency matrix
This graph has 6 vertices

a, b, c, d, e,  f.  We can 

arrange them in that order.d

W5

a

b

c

ea

c

e

f
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Finding the adjacency matrix
a    b    c    d     e    
f   

d
a        0    1 0    0     1    1
b
c
d
e
f

FROM

TO

There are edges from a to b, from a to e, and from a to f

W5

a

b

c

ea

c

e

f
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Finding the adjacency matrix
a    b    c    d     e    
f   

d
a        0    1 0    0     1    1
b        1 0    1 0    0    1
c
d
e
f

FROM

TO

There are edges from b to a, from b to c, and from b to f

W5

a

b

c

ea

c

e

f
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Finding the adjacency matrix
a    b    c    d     e    
f   

d
a        0    1 0    0     1    1
b        1 0    1 0    0    1
c        0    1 0     1 0    1
d
e
f

FROM

TO

There are edges from c to b, from c to d, and from c to f

W5

a

b

c

ea

c

e

f
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Finding the adjacency matrix
a    b    c    d     e    
f   

a        0    1 0    0     1    1
b        1 0    1 0    0    1
c        0    1 0     1 0    1
d
e
f

FROM

TO

COMPLETE THE ADJACENCY MATRIX . . . 

d

W5

a

b

c

ea

c

e

f
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Finding the adjacency matrix
a    b    c    d     e    
f   

d
a        0    1 0    0     1    1
b        1 0    1 0    0    1
c        0    1 0     1 0    1
d        0    0    1 0    1    1
e        1 0    0     1 0    1
f         1    1    1     1    1 0

FROM

TO

Notice that this matrix is symmetric.  That is aij = aji Why?

W5

a

b

c

ea

c

e

f



Adjacency Matrices for pseudo graph

• Matrix A=[aij], where aij is the number of 
edges that are associated to {vi, vj}

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0212
2110
1103
2030a

b

c

d

a b c d
a b

cd



Adjacency Lists

• A table with 1 row per vertex, listing its 
adjacent vertices.

a b

dc
f

e

 
Vertex 

Adjacent 
Vertices 

a 
b 

b, c 
a, c, e, f 

c a, b, f 
d  
e b 
f c, b 

 

 



Directed Adjacency Lists

• 1 row per node, listing the terminal nodes of 
each edge incident from that node.

node Terminal nodes

0 3

1 0, 2, 4

2 1

3

4 0,2



Incidence matrices

• Matrix M=[mij], where mij is 1 when edge ej

is incident with vi, 0 otherwise

v1

v2

v3

v4

e1 e2 e3 e4v1
v4

v3

v2

e5

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11010
000

000
001

11
11

11
e1

e2

e5

e4
e3



Isomorphism (Rosen 560 to 563)

Are two graphs G1 and G2 of equal form?
• That is, could I rename the vertices of G1 such that the graph becomes G2
• Is there a bijection f from vertices in V1 to vertices in V2 such that

• if (a,b) is in E1 then (f(a),f(b)) is in E2

So far, best algorithm is exponential in the worst case

There are necessary conditions
• V1 and V2 must be same cardinality
• E1 and E2 must be same cardinality
• degree sequences must be equal

• what’s that then?



a

cd

b 1

3

2

4

Are these graphs isomorphic?

a
b
c

d

1
2
3

4

How many possible bijections
are there? 

Is this the worst case performance?



a

cd

b 1

3

2

4

Are these graphs isomorphic?

a
b
c

d

1
2
3

4

How many bijections?
1234,1243,1324,1342,1423,1432
2134,2143, …
…
4123,4132,…                       ,4321

4! = 4.3.2.1 = 24



a

cd

b 1

3

2

4

Are these graphs isomorphic? But not all 4! need be considered

What might the search process look like that constructs the bijection?



Connectivity

A Path of length n from v to u, is a sequence of edges that take
us from u to v by traversing n edges.

A path is simple if no edge is repeated

A circuit is a path that starts and ends on the same vertex

An undirected graph is connected if there is a path between 
every pair of distinct vertices



Connectivity
a b

c
d

e

gf

hi

)}),(),,(),,(),,{(},,,,({1 dccbcabadcbaG =

)}),(),,(),,(),,{(},,,,,({2 higfgefeihgfeG =

This graph has 2 components



Connectivity
a b

c
d

)}),(),,(),,(),,{(},,,,({ dccbcabadcbaG =

A cut vertex v, is a vertex such that if we remove v, and all of the edges incident
on v, the graph becomes disconnected

We also have a cut edge, whose removal disconnects the graph

c is a cut vertex
(d,c) is a cut edge



Euler Path (the Konigsberg Bridge problem) Rosen 8.5

Is it possible to start somewhere, cross all the bridges once only,
and return to our starting place?

Leonhard Euler 1707-1783)

Is there a simple circuit in the given multigraph that contains every edge?



Fun with Paths in Graphs

• “6 Degrees of Kevin Bacon Game”
– Given a graph where:

• V = { set of all actors and actresses }
• E = { (a, b) | a,b ∈ V and (∃m ∈Movies, a appeared in 

m and b appeared in m)}
– Given an actor or actress A, can you find a path 

of length 6 or less from A to Kevin Bacon?



Slightly Less Fun Version (unless 
you’re a mathematician)

• The Erdos Number:
– Given a graph where

• V = { the set of all mathematicians and scientists 
from fields closely related to mathematics}

• E = { (a,b) | a,b ∈ V and “a coauthored an article, 
paper, or other scholarly work with b”}

– Given a mathematician (or scientist from a 
field closely related to math) A, what’s the 
length of the shortest path you can find from A 
to Paul Erdos?



A few Erdos numbers

• A few famous scientists
– Einstein: 2
– Schrodinger: 8
– John Nash: 4

• Another example (I was procrastinating 
one day while a grad student):
– Cicirello: 4
– Cicirello Regli Shokoufandeh 

Szemerédi Erdös





Euler Path (the Konigsberg Bridge problem)

Is there a simple circuit in the given multigraph that contains every edge?

a

b

c

d a d

c

b

An Euler circuit in a graph G is a simple circuit containing every edge of G.

An Euler path in a graph G is a simple path containing every edge of G.



Euler Circuit & Path

Necessary & Sufficient conditions

• every vertex must be of even degree
• if you enter a vertex across a new edge
• you must leave it across a new edge

A connected multigraph has an Euler circuit if and only if all vertices have even degree

The proof is in 2 parts (the biconditional)
The proof is in the book



Hamilton Paths & Circuits

Given a graph, is there a circuit that passes through each vertex 
once and once only?

Given a graph, is there a path that passes through each vertex 
once and once only?

Due to Sir William Rowan Hamilton (1805 to 1865)

Easy or hard?



Hamilton Paths & Circuits

HC is an instance of TSP!

Is there an HC?



Connected?

Is the following graph connected?

)}),(),,(),,(),,(),,(),,(),,{(},,,,,,,({ gffeegdcdbcbbagfedcbaG =

Draw the graph

What kind of algorithm could we use to test if connected?



Connected?

)}),(),,(),,(),,(),,(),,(),,{(},,,,,,,({ gffeegdcdbcbbagfedcbaG =

• (0) assume all vertices have an attribute visited(v)
• (1) have a stack S, and put on it any vertex v
• (2) remove a vertex v from the stack S
• (3) mark v as visited
• (4) let X be the set of vertices adjacent to v
• (5) for w in X do

• (5.1) if w is unvisited, add w to the top of the stack S
• (6) if S is not empty go to (2)
• (7) the vertices that are marked as visited are connected


	Graphs
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	The Havel-Hakimi Algorithm
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Cycles
	Slide Number 26
	Slide Number 27
	A Non-Simple Graph
	A Multigraph
	Another Non-Simple Graph
	Multiple Edges
	A Pseudograph
	Loops
	Undirected Graphs
	Slide Number 35
	Slide Number 36
	A Directed Graph
	A Directed Graph
	A Directed Multigraph
	A Directed Multigraph
	Types of Graphs
	Degree of a vertex
	Degree of a vertex
	Degree of a vertex
	Degree of a vertex
	Degree of a vertex
	Degree of a vertex
	Degree of a vertex
	Slide Number 49
	Subgraph
	C5 is a subgraph of K5
	Union
	W5 is the union of S5 and C5
	Slide Number 54
	Slide Number 55
	Adjacency Matrix
	Finding the adjacency matrix
	Finding the adjacency matrix
	Finding the adjacency matrix
	Finding the adjacency matrix
	Finding the adjacency matrix
	Finding the adjacency matrix
	Adjacency Matrices for pseudo graph
	Adjacency Lists
	Directed Adjacency Lists
	Incidence matrices
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Fun with Paths in Graphs
	Slightly Less Fun Version (unless you’re a mathematician)
	A few Erdos numbers
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84

