What is Boolean Algebra?

« A minor generalization of propositional logic.

— In general, amlgebrais any mathematical structure
BOOIGan Algebra, sagsfying certa?n standard algebraic axioms.
. . . « Such as associative/commutative/transitive @i,
LOg|C Ga'[eS, C|rCU|tS — General theorems that are proved about an algebra thenjapply

to anystructure satisfying these axioms.
« Boolean algebrgust generalizes the rules of
propositional logic to sets other th@n,F}.
CSIS 2226 — E.g, to the sef0,1} of base2 digits, or the set
{V., V,;} of low and high voltage levels in a circuit.

« We will see that this algebraic perspective lends itseg!

to the design odligital logic circuits Claude Shannonks
Master’s thesis!

Boolean Algebra §11.1 — Boolean Functions
 Sections of chapter 11: « Boolean complement, sum, product.
§1-Boolean Functions Boolean expressions and functions.

§2 — Representing Boolean Functions
§3 - Logic Gates
§4 — Minimization of Circuits

Boolean algebra identities.
 Duality.
Abstract definition of a Boolean algebra.

Complement, Sum, Product Boolean Functions
« Correspond to logical NOT, OR, aAdD. « LetB ={0, 1}, the set of Boolean values.
« We will denote the two logic values as * For alln0z*, any functionf:B"-B s called
0:=F and1:=T, instead ofalseandTrue. aBoolean function of degree n
— Using numbers encourages algebraic thinking. * There are” (wow!) distinct Boolean
« New, more algebrailpoking notation for functions of degrea.
the most common Boolean operators: —Bl/c 02" rows in truth table, w. 0 or 1 in each
X=X X[y =xLCy X+y=xLy D_e%@ ;‘Howzman D_ec'%e —YHOGVZ;?%

1 4 5) 4,294,967,296
2 16 6 18,446,744,073,709,551,616.
3 256

———Trrecedence order—————

Truth Tables

e The truth table for the
Boolean NOT operator is NOT X
shown at the right.

Truth Tables
X AND ¥
* A Boolean operator can be
. . X Y Xy
completely described using a truth o ol o
table. 9 1l @
+ The truth table for the Boolean i g ?
operators AND and OR are shown at
the right. X OR ¥
e The AND operator is also knownas | x v x+v
a Boolean product. The OR operator o o | o
is the Boolean sum. 0 1 1
10 1
11 1
Boolean Functions
* The truth table for the F(x,y,z) = XZ+y

Boolean function:

M
NI
»®
NI
+
=

F(x,vy,2) =xz2+y
is shown at the right.

* To make evaluation of the
Boolean function easier, the
truth table contains extra
(shaded) columns to hold
evaluations of subparts of
the function.

HHHHROOOO|NX
HHOOKRHKOO K
HOrOFROKRO N
OrOFrOKOHKF N|
orHrOHOOOO
HHEROKKKOO

X X
» The NOT operation is most
. 0 1
often designated by an q 2
overbar. It is sometimes
indicated by a prime mark (
) or an “elbow” (°).
Boolean Functions
e As with common F(X,y,2z) = XZ+y
arithmetic, Boolean E—
operations have rules of * Y = B FE)| XerY
dence 0O 0 O 1 0 0
prece : 0O 0 1 0 0 0
« The NOT operator has N - :
highest priority, followed 100 1 1 1
by AND and then OR. 101 0 O 0
1 1 0 1 1 1
¢ This is how we chose the 111 0 o 1

(shaded) function subparts
in our table.

Boolean Expressions

* Letx,, ..., x, bendifferent Boolean variables.
— nmay be as large as desired.
« A Boolean expressiofecursive definition) is a string
of one of the following forms:
— Base case$), 1, X, ..., OrX,.
— Recursive case&,, (E;E,), or (E,+E,), whereE, andE, are
Boolean expressions.
« A Boolean expression represents a Boolean functid

— FurthermoregveryBoolean function (of a given degree) ca
be represented by a Boolean expression.

=]

Hypercube Representation

» A Boolean function of degraecan be
represented by amcube (hypercube) with
the corresponding function value at each

vertex. (1,10 (1,1,1) (a, b1 C)
(0,1,0) (0%
<= a+b+bc
)(1,0,0) (1y0v1)
(0,0,00° 70,0,)

Boolean equivalents,
operations on Boolean expressions

« Two Boolean expressiore; ande, that represent
the exacsamefunctionf are calledequivalent.
We writee, = e,, or juste,=e,.

— Implicitly, the two expressions have the same valug for
all values of the free variables appearingjiande,.

« The operators, +, and- can be extended from
operating on expressions to operating on the
functions that they represent, in the obvious way.

| Boolean functions and digital circuits

Digital computers contain circuits that implement

Boolean functions.

* The simpler that we can make a Boolean functioa,
smaller the circuit that will result.
— Simpler circuits are cheaper to build, consume less

power, and run faster than complex circuits.

¢ With this in mind, we always want to reduce our
Boolean functions to their simplest form.

» There are a number of Boolean identities that hslp

to do this.

Some popular Boolean identities
« Double complement: « Associative laws:
X=x X+{y+2)=K+y)+z
« ldempotent laws: X (y-2=x-y)-z
X+ X=X, X:-X=X « Distributive laws:
« Identity laws: x+yz=(x+y)-(x+2) « Not true|
x+0=x, X-1=x X-(y+2)=xy+xz in ordinary
« Domination laws: » De Morgans laws: algebras.
x+1=1,) x-0=0 (-y) =%X+Y, k+y) =Xy
« Commutative laws: * Absorption laws:
X+Y=y+X X-y=y-X X+XY=X X-(X+y)=X

also, the Unit Propertyx +X=1 and Zero Propertyx - X=0

| Simplifying Boolean Functions |

* We can use Boolean identities to simplify the tiorc
as follows F (X, Y, 2) = (X + ¥) (X + ¥) (X2)

(X + Y) (X + Y) (X

Idempotent Law (Rewriting)
(X +Y) (X+Y) (X

DeMorgan's Law

1y NI

A 2)
(X
)

| Simplifying Boolean Functions

* Sometimes it is more economical to build a circui
using the complement of a function (and
complementing its result) than it is to implemerg t
function directly.

» DeMorgan’s law provides an easy way of finding fhe
complement of a Boolean function.

« Recall DeMorgan’s law states:

(xy) =x+y and (x+y)=xy

(XX + XY + XY + YY) (X + 2) | Distributive Law
((X+ YY) +X(Y+Y)) (X +2Z)| Commutative & Distributive Laws
((X+0) +X(1)) (X+2) Inverse Law

X(X + 2) Idempotent Law

XX + X2 Distributive Law

0 + Xz Inverse Law

XZ Idempotent Law

| Simplifying Boolean Functions

* DeMorgan’s law can be extended to any number of
variables.

« Replace each variable by its complement and change all

ANDs to ORs and all ORs to ANDs.
« Thus, we find the the complement of:
F(X,Y,Z)= (XY)+(XZ)+(YZ)
ISt F(x,¥,2)= (XY) +(XZ) + (¥YZ)

= (XY)(X2) (YZ)

= (X+Y)(X+2Z)(Y+2)

Duality

« Thedual & of a Boolean expressian
representing functiohis obtained by
exchanging+ with -, andO with 1in e.

— The function represented kYyis denoted.

« Duality principle: If e = e, thene<e/f.

— Example: The equivalencg(x+y) = x
implies (and is implied by} + xy = x.

Boolean Algebra, in the abstraict

« A generaBoolean algebras anysetB having
elementd, 1, two binary operators},[J, and a
unary operatos that satisfies the following laws:
— ldentity laws: x0O0=x, x0Ol=x
— Complement laws:x O=x =1, x0O-x=0
— Associativelaws(x[y) [0z = x(y[L), (xOy) Oz = x(Ay[k2)
— Commutative lawsx Oy =y 0Ox, x0Oy=y0Ox
— Distributive laws: x(O(y(lz) = (xCy) O(x[2),

Note thatB may generally have other| X[y[z)=(xCly) (x(02).
elements besided; 1, and we have nof
fully defined any of the operators!

§11.2 — Representing Boolean
Functions

« Sumof-products Expansions

— A.k.a. Disjunctive Normal Form (DNF)
Productof-sums Expansions

— A.k.a. Conjunctive Normal Form (CNF)
Functional Completeness

— Minimal functionally complete sets of
operators.

Sum-of-Products Expansions

« Theorem: Any Boolean function can be

—{ Show an example on the boa}rd.—

represented as a sum of products of
variables and their complements.

— Proof: By construction from the functios
truth table. For each row that is 1, include &
term in the sum that is a product representirjg
the condition that the variables have the vallies
given for that row.

Literals, Minterms, DNF

« A literal is a Boolean variable or its complemerh.
« A mintermof Boolean variables,,... x, is a
Boolean product aiiliteralsy; ...y, wherey, is
either the literak; or its complement;.
— Note that at most ormaintermcan have the value 1.
« Thedisjunctive normal forn(DNF) of a degres
Boolean functiorf is the unique sum ahinterms
of the variables,,...,x, that represents
— A.k.a. the sunof-products expansion &f

Converting

It is easy to convert a function t¢ F(x,y,2z) = xZ+y
sum-of-products form using its
truth table.

We are interested in the values
the variables that make the
function true (=1).

Using the truth table, we list the
values of the variables that resy
in a true function value.

Each group of variables is then
ORed together.

X

L4
NI
+

L4

PHEHHEPOOOO X
HrPRrOORRFROO
HOKFORFORFR O N
HPROKRROO

Converting

* The sum-of-products form fo F(x,y,z) = xz+y

our function is: -
X y z xXz+y
F(X,V,2) = XYZ+XYZ+XYZ 8 g (1) 8
+xyz+

Xyz+xyz 0 1 0 1
01 1 1
We note that thisfunction is not 1 g (1) é
in simplest terms. Our aim is 11 0 1
only torewrite our function in 101 1 1

canonical sum-of-products form.

Conjunctive Normal Form

A maxtermis a sum of literals.
CNF is aproductof-maxtermgepresentation.
To find the CNF representation fir

take the DNF representation for complemefit
-f=X/1y;
and then complement both sides & apply

DeMorgaris laws to get:

Can also get CNF mo
f=]7\15]‘ ﬂy\‘j

directly, using the 0

rows of the truth table

)

Functional Completeness

Since every Boolean function can be expresse
terms of-,+,, we say that the set of operators
{-,+, } isfunctionally complete

There are smaller sets of operators that are al
functionally complete.

— We can eliminate eitheror + usingDeMorgaris law.
NAND |and NOR! are also functionally
complete, each by itself (as a singleton set).

— E.g, ~x=xJx, andxy = (xly)|(xly)-

d in

§11.3 — Logic Gates

Inverter, Or, And gate symbols.
Multi-input gates.

Logic circuits and examples.
Adders,"“half,” “full,” andn-bit.

Logic Gate Symbols

Inverter (logical NOT, xD X
Boolean complement).

AND gate (Boolean X Xy
product).

OR gate (Boolean sum).

XOR gate (exclusivOR,
sum mod 2).

X <]

?D—Y

Multi-input AND, OR, XOR

Can extend these Xy

L % X XoX3
gates to arbitrarily =
many inputs.

Two commonly< X1 Xq. X

seen drawing styles:

— Note that the second Xg
style keeps the gate
icon relatively small.

E

NAND, NOR, XNOR

« Just like the earlier icons, X Y
but with a small circle on :Do_y
the gatés output. y
— Denotes that output is X xTy

« The circles can also be y i
placed on inputs. X X0y
— Means, input is complemented Do—)

before being used. y

complemented.

Buffer

* What about an inverter X X
symbolwithouta circle?

« This is called duffer. It is the identity function.
« |t serves no logical purpose, but

« It represents an explicit delay in the circuit.
— This is sometimes useful for timing purposes.

non-zero delay between when their inputs are
seen and when their outputs are ready.

« All gates, when physically implemented, incur a

Combinational Logic Circuits

* Note: The correct word to use here is
“combinatonal,” NOT “combinatrial!”

— Many sloppy authors get this wrong.

» These are circuits composed of Boolean
gates whose outputs depend only on the
most recent inputs, not on earlier inputs.
— Thus these circuits have no useful memory.

* Their state persists while the inputs are constant,
is irreversibly lost when the input signals change.

-

but

« Draw a few examples on the board:
— Majority voting circuit.
— XOR using OR / AND / NOT.
— 3-input XOR using OR / AND / NOT.
* Also, show some binary adders:
— Half adder using OR/AND/NOT.
— Full adder from hathdders.
— Ripple-carry adders.

Combinational Circuit Examplgs

§11.4 — Minimizing Circuits

» KarnaughMaps
» Don't careconditions
» TheQuineMcCluskeyMethod

Goals of Circuit Minimization

¢ (1) Minimize the number of primitive Boolean logi
gates needed to implement the circuit.
— Ultimately, this also roughly minimizes the number of
transistors, the chip area, and the cost.
« Also roughly minimizes the energy expenditure
— among traditional irreversible circuits.

— This will be our focus.
* (2) Itis also often useful to minimize the number
combinationaktageor logicaldepthof the circuit.

— This roughly minimizes thdelayor latencythrough the
circuit, the time between input and output.

54

=

Minimizing DNF Expressions

7]

« Using DNF (or CNF) guarantees there is alway
somecircuit that implements any desired Boolepn
function.

— However, it may be far larger than needed!

« We would like to find thesmallessumof-
products expression that yields a given functio
— This will yield a fairly small circuit.

— However, circuits of other forms (not CNF or DNF)
might be even smaller for complex functions.

=)

