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What is Boolean Algebra?

•• A minor generalization of propositional logic.A minor generalization of propositional logic.
–– In general, an In general, an algebraalgebrais any mathematical structure is any mathematical structure 

satisfying certain standard algebraic axioms.satisfying certain standard algebraic axioms.
•• Such as associative/commutative/transitive laws, Such as associative/commutative/transitive laws, etc.etc.

–– General theorems that are proved about an algebra then apply General theorems that are proved about an algebra then apply 
to to any any structure satisfying these axioms.structure satisfying these axioms.

•• Boolean algebraBoolean algebrajust generalizes the rules of just generalizes the rules of 
propositional logic to sets other than propositional logic to sets other than {{ TT,,FF}} ..
–– E.g.E.g., to the set , to the set {0,1}{0,1} of baseof base--2 digits, or the set 2 digits, or the set 

{{ VVLL, , VVHH}} of low and high voltage levels in a circuit.of low and high voltage levels in a circuit.

•• We will see that this algebraic perspective lends itself We will see that this algebraic perspective lends itself 
to the design of to the design of digital logic circuitsdigital logic circuits.. Claude Shannon’s

Master’s thesis!
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Boolean Algebra

•• Sections of chapter 11:Sections of chapter 11:��1 1 –– Boolean FunctionsBoolean Functions��2 2 –– Representing Boolean FunctionsRepresenting Boolean Functions��3 3 –– Logic GatesLogic Gates��4 4 –– Minimization of CircuitsMinimization of Circuits
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�11.1 – Boolean Functions

•• Boolean complement, sum, product.Boolean complement, sum, product.

•• Boolean expressions and functions.Boolean expressions and functions.

•• Boolean algebra identities.Boolean algebra identities.

•• Duality.Duality.

•• Abstract definition of a Boolean algebra.Abstract definition of a Boolean algebra.

5

Complement, Sum, Product

•• Correspond to logical NOT, OR, and Correspond to logical NOT, OR, and ANDAND..

•• We will denote the two logic values asWe will denote the two logic values as
00::��FF and and 11::��TT, instead of , instead of FalseFalse and and TrueTrue..
–– Using numbers encourages algebraic thinking.Using numbers encourages algebraic thinking.

•• New, more algebraicNew, more algebraic--looking notation for looking notation for 
the most common Boolean operators: the most common Boolean operators: 

xx ¬≡: yxyx ∨≡+ :yxyx ∧≡⋅ :

Precedence order�
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Boolean Functions

•• Let Let BB = {= {00, , 11}} , the set of Boolean values., the set of Boolean values.

•• For all For all nn∈∈ZZ++,, any function any function ff::BBnn��BB is called is called 
a a Boolean function of degree nBoolean function of degree n..

•• There are There are 2222�� (wow!) distinct Boolean (wow!) distinct Boolean 
functions of degree functions of degree nn..
–– B/c B/c ∃∃ 22nn rows in truth table, w. 0 or 1 in each.rows in truth table, w. 0 or 1 in each.

Degree How many Degree How many
0 2                     4                          65,536             
1                 4                      5                 4,294,967,296
2                16                     6          18,446,744,073,709,551,616.
3               256
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Truth Tables

• A Boolean operator can be 
completely described using a truth 
table.

• The truth table for the Boolean 
operators AND and OR are shown at 
the right.

• The AND operator is also known as 
a Boolean product.  The OR operator 
is the Boolean sum.

Truth Tables

• The truth table for the 
Boolean NOT operator is 
shown at the right.

• The NOT operation is most 
often designated by an 
overbar. It is sometimes 
indicated by a prime mark ( ‘
) or an “elbow” (¬).

Boolean Functions

• The truth table for the 
Boolean function:

is shown at the right.

• To make evaluation of the 
Boolean function easier, the 
truth table contains extra 
(shaded) columns to hold 
evaluations of subparts of 
the function.

Boolean Functions

• As with common 
arithmetic, Boolean 
operations have rules of 
precedence.

• The NOT operator has 
highest priority, followed 
by AND and then OR.

• This is how we chose the 
(shaded) function subparts 
in our table. 
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Boolean Expressions

•• Let Let xx11, , ……, , xxnn be be nn different Boolean variables.different Boolean variables.
–– nn may be as large as desired.may be as large as desired.

•• A A Boolean expressionBoolean expression(recursive definition) is a string (recursive definition) is a string 
of one of the following forms:of one of the following forms:
–– Base cases: Base cases: 00, , 11, , xx11, , ……, or , or xxnn..
–– Recursive cases: Recursive cases: EE11, , ((EE11EE22)), or , or ((EE11++EE22)), where , where EE11 and and EE22 are are 

Boolean expressions.Boolean expressions.

•• A Boolean expression represents a Boolean function.A Boolean expression represents a Boolean function.
–– Furthermore, Furthermore, everyeveryBoolean function (of a given degree) can Boolean function (of a given degree) can 

be represented by a Boolean expression.be represented by a Boolean expression.

12

Hypercube Representation

•• A Boolean function of degree A Boolean function of degree nn can be can be 
represented by an represented by an nn--cube (hypercube) with cube (hypercube) with 
the corresponding function value at each the corresponding function value at each 
vertex.vertex.

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

(1,0,0) (1,0,1)

(1,1,0) (1,1,1)0

1
0

1

0

1

0

1

bcba ++

(a, b, c)
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Boolean equivalents, 
operations on Boolean expressions

•• Two Boolean expressions Two Boolean expressions ee11 and and ee22 that represent that represent 
the exact the exact same same function function ff are called are called equivalent.  equivalent.  
We write We write ee11⇔⇔ee22, or just , or just ee11==ee22..
–– Implicitly, the two expressions have the same value for Implicitly, the two expressions have the same value for 

allall values of the free variables appearing in values of the free variables appearing in ee11 and and ee22..

•• The operators The operators ̄̄, , ++, and , and ·· can be extended from can be extended from 
operating on expressions to operating on the operating on expressions to operating on the 
functions that they represent, in the obvious way.functions that they represent, in the obvious way.

Boolean functions and digital circuits

• Digital computers contain circuits that implement 
Boolean functions.

• The simpler that we can make a Boolean function, the 
smaller the circuit that will result.
– Simpler circuits are cheaper to build, consume less 

power, and run faster than complex circuits.

• With this in mind, we always want to reduce our 
Boolean functions to their simplest form.

• There are a number of Boolean identities that help us 
to do this.
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Some popular Boolean identities

•• Double complement:Double complement:
xx = = xx

•• Idempotent laws:Idempotent laws:
x x + + xx = = xx,          ,          x x ·· xx = = xx

•• Identity laws:Identity laws:
xx + + 00 = = xx,          ,          xx ·· 11 = = xx

•• Domination laws:Domination laws:
xx + + 11 = = 11,          ,          xx ·· 00 = = 00

•• Commutative laws:Commutative laws:
xx + + yy = = yy + + xx,     ,     xx ·· yy = = yy ·· xx

•• Associative laws:Associative laws:
xx + (+ (yy + + zz) = () = (xx + + yy) + ) + zz

xx ·· ((yy ·· zz) = () = (xx ·· yy) ) ·· zz

•• Distributive laws:Distributive laws:
xx + + yy··zz = (= (xx + + yy))··((xx + + zz))

xx ·· ((yy + + zz) = ) = xx··yy + + xx··zz

•• De MorganDe Morgan’’ s laws:s laws:
((x x ·· yy) = ) = xx + + yy,  (,  (xx + + yy) = ) = xx ·· yy

•• Absorption laws:Absorption laws:
xx + + xx··yy = = xx,    ,    xx ·· ((xx + + yy) = ) = xx

� Not true
in ordinary
algebras.

also, the Unit Property:  x + x = 1 and Zero Property:  x · x = 0

Simplifying Boolean Functions

• We can use Boolean identities to simplify the function:

as follows:

Simplifying Boolean Functions

• Sometimes it is more economical to build a circuit 
using the complement of a function (and 
complementing its result) than it is to implement the 
function directly.

• DeMorgan’s law provides an easy way of finding the 
complement of a Boolean function.

• Recall DeMorgan’s law states:

Simplifying Boolean Functions

• DeMorgan’s law can be extended to any number of 
variables.

• Replace each variable by its complement and change all 
ANDs to ORs and all ORs to ANDs.

• Thus, we find the the complement of:

is:
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Duality

•• The The dualdual eedd of a Boolean expression of a Boolean expression ee
representing function representing function ff is obtained by is obtained by 
exchanging exchanging ++ with with ··, and , and 00 with with 11 in in ee..
–– The function represented by The function represented by eedd is denoted is denoted ffdd..

•• Duality principle:Duality principle: If If ee11⇔⇔ee22 then then ee11
dd⇔⇔ee22

dd..
–– Example:Example: The equivalence The equivalence xx((xx++yy) ) = = xx

implies (and is implied by) implies (and is implied by) xx + + xyxy = = xx..
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Boolean Algebra, in the abstract

•• A general A general Boolean algebraBoolean algebrais is anyanyset set BB having having 
elements elements 00, , 11, two binary operators , two binary operators ∧∧∧∧∧∧∧∧,,∨∨∨∨∨∨∨∨,, and a and a 
unary operator unary operator ¬¬¬¬¬¬¬¬ that satisfies the following laws:that satisfies the following laws:
–– Identity laws:           Identity laws:           xx ∨∨∨∨∨∨∨∨ 00 = = xx,           ,           xx ∧∧∧∧∧∧∧∧ 11 = = xx

–– Complement laws:   Complement laws:   xx ∨∨∨∨∨∨∨∨ ¬¬¬¬¬¬¬¬xx = = 11,        ,        xx ∧∧∧∧∧∧∧∧ ¬¬xx = = 00

–– Associative Associative laws:laws:((xx∨∨∨∨∨∨∨∨yy))∨∨∨∨∨∨∨∨zz = = xx∨∨∨∨∨∨∨∨((yy∨∨∨∨∨∨∨∨zz)), , ((xx∧∧∧∧∧∧∧∧yy))∧∧∧∧∧∧∧∧zz = = xx∧∧∧∧∧∧∧∧((yy∧∧∧∧∧∧∧∧zz))

–– Commutative laws:  Commutative laws:  x x ∨∨∨∨∨∨∨∨ yy = = y y ∨∨∨∨∨∨∨∨ xx,     ,     x x ∧∧∧∧∧∧∧∧ yy = = y y ∧∧∧∧∧∧∧∧ xx

–– Distributive laws:   Distributive laws:   xx∨∨∨∨∨∨∨∨((yy∧∧∧∧∧∧∧∧zz) = () = (xx∨∨∨∨∨∨∨∨yy))∧∧∧∧∧∧∧∧((xx∨∨∨∨∨∨∨∨zz)),  ,  
xx∧∧∧∧∧∧∧∧((yy∨∨∨∨∨∨∨∨zz)=()=(xx∧∧∧∧∧∧∧∧yy))∨∨∨∨∨∨∨∨((xx∧∧∧∧∧∧∧∧zz))..Note that B may generally have other 

elements besides 0, 1, and we have not 
fully defined any of the operators!
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�11.2 – Representing Boolean 
Functions

•• SumSum--ofof--products Expansionsproducts Expansions
–– A.k.a. Disjunctive Normal Form (DNF)A.k.a. Disjunctive Normal Form (DNF)

•• ProductProduct--ofof--sums Expansionssums Expansions
–– A.k.a. Conjunctive Normal Form (CNF)A.k.a. Conjunctive Normal Form (CNF)

•• Functional CompletenessFunctional Completeness
–– Minimal functionally complete sets of Minimal functionally complete sets of 

operators.operators.
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Sum-of-Products Expansions

•• Theorem:Theorem: Any Boolean function can be Any Boolean function can be 
represented as a sum of products of represented as a sum of products of 
variables and their complements.variables and their complements.
–– Proof:Proof: By construction from the functionBy construction from the function’’ s s 

truth table.  For each row that is 1, include a truth table.  For each row that is 1, include a 
term in the sum that is a product representing term in the sum that is a product representing 
the condition that the variables have the values the condition that the variables have the values 
given for that row.given for that row.

Show an example on the board.
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Literals, Minterms, DNF

•• A A literalliteral is a Boolean variable or its complement.is a Boolean variable or its complement.
•• A A mintermmintermof Boolean variables of Boolean variables xx11,,……,,xxnn is a is a 

Boolean product of Boolean product of nn literals literals yy11……yynn, where , where yyii is is 
either the literal either the literal xxii or its complement or its complement xxii ..
–– Note that at most one Note that at most one mintermmintermcan have the value 1.can have the value 1.

•• The The disjunctive normal formdisjunctive normal form(DNF) of a degree(DNF) of a degree--nn
Boolean function Boolean function ff is the unique sum of is the unique sum of mintermsminterms
of the variables of the variables xx11,,……,,xxnn that represents that represents ff..
–– A.k.a. the sumA.k.a. the sum--ofof--products expansion of products expansion of ff..

Converting

• It is easy to convert a function to 
sum-of-products form using its 
truth table.

• We are interested in the values of 
the variables that make the 
function true (=1).

• Using the truth table, we list the 
values of the variables that result 
in a true function value.

• Each group of variables is then 
ORed together.
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Converting

• The sum-of-products form for 
our function is:

We note that this function is not 
in simplest terms. Our aim is 
only to rewrite our function in 
canonical sum-of-products form. 
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Conjunctive Normal Form

•• A A maxtermmaxtermis a sum of literals.is a sum of literals.

•• CNF is a CNF is a productproduct--ofof--maxtermsmaxtermsrepresentation.representation.

•• To find the CNF representation for To find the CNF representation for ff,,

•• take the DNF representation for complement take the DNF representation for complement ¬¬ff,,
¬¬ff == ��ii��jj yyii,,jj

•• and then complement both sides & apply and then complement both sides & apply 
DeMorganDeMorgan’’ ss laws to get:laws to get:

ff == ��ii��jj ¬¬yyii,,jj

Can also get CNF more
directly, using the 0
rows of the truth table.
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Functional Completeness

•• Since every Boolean function can be expressed in Since every Boolean function can be expressed in 
terms of terms of ··,,++,,¯̄, we say that the set of operators , we say that the set of operators 
{{ ··,+,,+,¯̄}} is is functionally completefunctionally complete..

•• There are smaller sets of operators that are also There are smaller sets of operators that are also 
functionally complete.functionally complete.
–– We can eliminate either We can eliminate either ·· or or ++ using using DeMorganDeMorgan’’ ss law.law.

•• NAND NAND || and NOR and NOR �� are also functionally are also functionally 
complete, each by itself (as a singleton set).complete, each by itself (as a singleton set).
–– E.g.E.g., , ¬¬xx = = xx||xx, and , and xyxy = (= (xx||yy)|()|(xx||yy))..
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�11.3 – Logic Gates

•• Inverter, Or, And gate symbols.Inverter, Or, And gate symbols.

•• MultiMulti --input gates.input gates.

•• Logic circuits and examples.Logic circuits and examples.

•• Adders, Adders, ““ half,half,”” ““ full,full, ”” and and nn--bit.bit.
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Logic Gate Symbols

•• Inverter (logical NOT,Inverter (logical NOT,
Boolean complement).Boolean complement).

•• AND gate (BooleanAND gate (Boolean
product).product).

•• OR gate (Boolean sum).OR gate (Boolean sum).

•• XOR gate (exclusiveXOR gate (exclusive--OR,OR,
sum mod 2).sum mod 2).

x x

x

y
x·y

x

y
x+y

y

x x�y
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Multi-input AND, OR, XOR

•• Can extend these Can extend these 
gates to arbitrarilygates to arbitrarily
many inputs.many inputs.

•• Two commonlyTwo commonly
seen drawing styles:seen drawing styles:
–– Note that the second Note that the second 

style keeps the gate style keeps the gate 
icon relatively small.icon relatively small.

x1 x1x2x3x2
x3

x1�
x5

x1…x5
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NAND, NOR, XNOR

•• Just like the earlier icons,Just like the earlier icons,
but with a small circle onbut with a small circle on
the gatethe gate’’ s output.s output.
–– Denotes that output is Denotes that output is 

complemented.complemented.

•• The circles can also be The circles can also be 
placed on inputs.placed on inputs.
–– Means, input is complementedMeans, input is complemented

before being used.before being used.

x

y

x

y

y

x

xy

yx +

yx⊕
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Buffer

•• What about an inverterWhat about an inverter
symbol symbol withoutwithouta circle?a circle?

•• This is called a This is called a bufferbuffer.  It is the identity function..  It is the identity function.
•• It serves no logical purpose, butIt serves no logical purpose, but……
•• It represents an explicit delay in the circuit.It represents an explicit delay in the circuit.

–– This is sometimes useful for timing purposes.This is sometimes useful for timing purposes.

•• All gates, when physically implemented, incur a All gates, when physically implemented, incur a 
nonnon--zero delay between when their inputs are zero delay between when their inputs are 
seen and when their outputs are ready.seen and when their outputs are ready.

x x
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Combinational Logic Circuits

•• Note:Note: The correct word to use here is The correct word to use here is 
““ combinatcombinationional,al,”” NOTNOT ““ combinatcombinatoriorial!al!””
–– Many sloppy authors get this wrong.Many sloppy authors get this wrong.

•• These are circuits composed of Boolean These are circuits composed of Boolean 
gates whose outputs depend only on their gates whose outputs depend only on their 
most recent inputs, not on earlier inputs.most recent inputs, not on earlier inputs.
–– Thus these circuits have no useful memory.Thus these circuits have no useful memory.

•• Their state persists while the inputs are constant, but Their state persists while the inputs are constant, but 
is irreversibly lost when the input signals change.is irreversibly lost when the input signals change.
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Combinational Circuit Examples

•• Draw a few examples on the board:Draw a few examples on the board:
–– Majority voting circuit.Majority voting circuit.
–– XOR using OR / AND / NOT.XOR using OR / AND / NOT.
–– 33--input XOR using OR / AND / NOT.input XOR using OR / AND / NOT.

•• Also, show some binary adders:Also, show some binary adders:
–– Half adder using OR/AND/NOT.Half adder using OR/AND/NOT.
–– Full adder from halfFull adder from half--adders.adders.
–– RippleRipple--carry adders.carry adders.
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�11.4 – Minimizing Circuits

•• KarnaughKarnaughMapsMaps

•• DonDon’’ t caret careconditionsconditions

•• The The QuineQuine--McCluskeyMcCluskeyMethodMethod

36

Goals of Circuit Minimization

•• (1) Minimize the number of primitive Boolean logic (1) Minimize the number of primitive Boolean logic 
gates needed to implement the circuit.gates needed to implement the circuit.
–– Ultimately, this also roughly minimizes the number of Ultimately, this also roughly minimizes the number of 

transistors, the chip area, and the cost.transistors, the chip area, and the cost.
•• Also roughly minimizes the energy expenditureAlso roughly minimizes the energy expenditure

–– among traditional irreversible circuits.among traditional irreversible circuits.

–– This will be our focus.This will be our focus.

•• (2) It is also often useful to minimize the number of (2) It is also often useful to minimize the number of 
combinational combinational stagesstagesor logical or logical depthdepthof the circuit.of the circuit.
–– This roughly minimizes the This roughly minimizes the delaydelayor or latencylatencythrough the through the 

circuit, the time between input and output.circuit, the time between input and output.
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Minimizing DNF Expressions

•• Using DNF (or CNF) guarantees there is always Using DNF (or CNF) guarantees there is always 
somesomecircuit that implements any desired Boolean circuit that implements any desired Boolean 
function.function.
–– However, it may be far larger than needed!However, it may be far larger than needed!

•• We would like to find the We would like to find the smallestsmallestsumsum--ofof--
products expression that yields a given function.products expression that yields a given function.
–– This will yield a fairly small circuit.This will yield a fairly small circuit.

–– However, circuits of other forms (not CNF or DNF) However, circuits of other forms (not CNF or DNF) 
might be even smaller for complex functions.might be even smaller for complex functions.


