
1

Analysis of Algorithms &
Orders of Growth

Rosen 6th ed., §3.1-3.3

2

Analysis of Algorithms

• An algorithm is a finite set of precise instructions
for performing a computation or for solving a
problem.

• What is the goal of analysis of algorithms?
– To compare algorithms mainly in terms of running time

but also in terms of other factors (e.g., memory
requirements, programmer's effort etc.)

• What do we mean by running time analysis?
– Determine how running time increases as the size of

the problem increases.

3

Example: Searching

• Problem of searching an ordered list.
– Given a list L of n elements that are sorted into

a definite order (e.g., numeric, alphabetical),
– And given a particular element x,
– Determine whether x appears in the list, and if

so, return its index (position) in the list.

4

Search alg. #1: Linear Search

procedure linear search
(x: integer, a1, a2, …, an: distinct integers)
i := 1
while (i ≤ n ∧ x ≠ ai)

i := i + 1
if i ≤ n then location := i
else location := 0
return location {index or 0 if not found}

5

Search alg. #2: Binary Search

• Basic idea: On each step, look at the middle
element of the remaining list to eliminate
half of it, and quickly zero in on the desired
element.

<x >x<x <x

6

Search alg. #2: Binary Search

procedure binary search
(x:integer, a1, a2, …, an: distinct integers)
i := 1 {left endpoint of search interval}
j := n {right endpoint of search interval}
while i<j begin {while interval has >1 item}

m := ⎣(i+j)/2⎦ {midpoint}
if x>am then i := m+1 else j := m

end
if x = ai then location := i else location := 0
return location

7

Is Binary Search more efficient?
• Number of iterations:

– For a list of n elements, Binary Search can
execute at most log2 n times!!

– Linear Search, on the other hand, can execute up
to n times !!

Average Number of Iterations
Length Linear Search Binary Search

10 5.5 2.9
100 50.5 5.8

1,000 500.5 9.0
10,000 5000.5 12.0

8

Is Binary Search more efficient?

• Number of computations per iteration:
– Binary search does more computations than

Linear Search per iteration.
• Overall:

– If the number of components is small (say, less
than 20), then Linear Search is faster.

– If the number of components is large, then
Binary Search is faster.

9

How do we analyze algorithms?

• We need to define a number of objective measures.

(1) Compare execution times?
Not good: times are specific to a particular computer !!

(2) Count the number of statements executed?
Not good: number of statements vary with the
programming language as well as the style of the
individual programmer.

10

Example (# of statements)

Algorithm 1 Algorithm 2

arr[0] = 0; for(i=0; i<N; i++)
arr[1] = 0; arr[i] = 0;
arr[2] = 0;
...
arr[N-1] = 0;

11

How do we analyze algorithms?

(3) Express running time as a function of
the input size n (i.e., f(n)).

– To compare two algorithms with running times
f(n) and g(n), we need a rough measure of
how fast a function grows.

– Such an analysis is independent of machine
time, programming style, etc.

12

Computing running time
• Associate a "cost" with each statement and find the

"total cost“ by finding the total number of times
each statement is executed.

• Express running time in terms of the size of the
problem.
Algorithm 1 Algorithm 2

Cost Cost
arr[0] = 0; c1 for(i=0; i<N; i++) c2
arr[1] = 0; c1 arr[i] = 0; c1
arr[2] = 0; c1
...
arr[N-1] = 0; c1

----------- -------------
c1+c1+...+c1 = c1 x N (N+1) x c2 + N x c1 =

(c2 + c1) x N + c2

13

Computing running time (cont.)

Cost
sum = 0; c1
for(i=0; i<N; i++) c2

for(j=0; j<N; j++) c2
sum += arr[i][j]; c3

c1 + c2 x (N+1) + c2 x N x (N+1) + c3 x N x N

14

Comparing Functions Using
Rate of Growth

• Consider the example of buying elephants and
goldfish:

Cost: cost_of_elephants + cost_of_goldfish
Cost ~ cost_of_elephants (approximation)

• The low order terms in a function are relatively
insignificant for large n

n4 + 100n2 + 10n + 50 ~ n4

i.e., n4 + 100n2 + 10n + 50 and n4 have the same
rate of growth

15

Rate of Growth ≡Asymptotic Analysis

• Using rate of growth as a measure to compare
different functions implies comparing them
asymptotically.

• If f(x) is faster growing than g(x), then f(x)
always eventually becomes larger than g(x) in
the limit (for large enough values of x).

16

Example

• Suppose you are designing a web site to process
user data (e.g., financial records).

• Suppose program A takes fA(n)=30n+8
microseconds to process any n records, while
program B takes fB(n)=n2+1 microseconds to
process the n records.

• Which program would you choose, knowing
you’ll want to support millions of users?

17

Visualizing Orders of Growth

• On a graph, as
you go to the
right, a faster
growing
function
eventually
becomes
larger...

fA(n)=30n+8

Increasing n →

fB(n)=n2+1

Va
lu

e
of

 fu
nc

tio
n
→

18

Big-O Notation

• We say fA(n)=30n+8 is order n, or O(n).
It is, at most, roughly proportional to n.

• fB(n)=n2+1 is order n2, or O(n2). It is, at
most, roughly proportional to n2.

• In general, an O(n2) algorithm will be
slower than O(n) algorithm.

• Warning: an O(n2) function will grow
faster than an O(n) function.

19

More Examples …

• We say that n4 + 100n2 + 10n + 50 is of the
order of n4 or O(n4)

• We say that 10n3 + 2n2 is O(n3)
• We say that n3 - n2 is O(n3)
• We say that 10 is O(1),
• We say that 1273 is O(1)

20

Big-O Visualization

21

Computing running time
Algorithm 1 Algorithm 2

Cost Cost
arr[0] = 0; c1 for(i=0; i<N; i++) c2
arr[1] = 0; c1 arr[i] = 0; c1
arr[2] = 0; c1
...
arr[N-1] = 0; c1

----------- -------------
c1+c1+...+c1 = c1 x N (N+1) x c2 + N x c1 =

(c2 + c1) x N + c2

O(n)

22

Computing running time (cont.)

Cost

sum = 0; c1
for(i=0; i<N; i++) c2

for(j=0; j<N; j++) c2
sum += arr[i][j]; c3

c1 + c2 x (N+1) + c2 x N x (N+1) + c3 x N x N

O(n2)

23

Running time of various statements
while-loop for-loop

24

i = 0;
while (i<N) {

X=X+Y; // O(1)
result = mystery(X); // O(N), just an example...
i++; // O(1)

}
• The body of the while loop: O(N)
• Loop is executed: N times

N x O(N) = O(N2)

Examples

25

if (i<j)
for (i=0; i<N; i++)

X = X+i;
else

X=0;

Max (O(N), O(1)) = O (N)

O(N)

O(1)

Examples (cont.’d)

26

Asymptotic Notation

• O notation: asymptotic “less than”:

– f(n)=O(g(n)) implies: f(n) “≤” g(n)

• Ω notation: asymptotic “greater than”:

– f(n)= Ω (g(n)) implies: f(n) “≥” g(n)

• Θ notation: asymptotic “equality”:

– f(n)= Θ (g(n)) implies: f(n) “=” g(n)

27

Definition: O(g), at most order g

Let f,g are functions R→R.
• We say that “f is at most order g”, if:

∃c,k: f(x) ≤ cg(x), ∀x>k
– “Beyond some point k, function f is at most a

constant c times g (i.e., proportional to g).”
• “f is at most order g”, or “f is O(g)”, or

“f=O(g)” all just mean that f∈O(g).
• Sometimes the phrase “at most” is omitted.

28

Big-O Visualization

k

29

Points about the definition

• Note that f is O(g) as long as any values of c
and k exist that satisfy the definition.

• But: The particular c, k, values that make
the statement true are not unique: Any
larger value of c and/or k will also work.

• You are not required to find the smallest c
and k values that work. (Indeed, in some
cases, there may be no smallest values!)

However, you should prove that the values you choose do work.

30

“Big-O” Proof Examples

• Show that 30n+8 is O(n).
– Show ∃c,k: 30n+8 ≤ cn, ∀n>k .

• Let c=31, k=8. Assume n>k=8. Then
cn = 31n = 30n + n > 30n+8, so 30n+8 < cn.

• Show that n2+1 is O(n2).
– Show ∃c,k: n2+1 ≤ cn2, ∀n>k: .

• Let c=2, k=1. Assume n>1. Then
cn2 = 2n2 = n2+n2 > n2+1, or n2+1< cn2.

31

• Note 30n+8 isn’t
less than n
anywhere (n>0).

• It isn’t even
less than 31n
everywhere.

• But it is less than
31n everywhere to
the right of n=8.

n>k=8 →

Big-O example, graphically

Increasing n →

Va
lu

e
of

 fu
nc

tio
n
→

n

30n+8
cn =
31n

30n+8
∈O(n)

32

Common orders of magnitude

33

34

Order-of-Growth in Expressions

• “O(f)” can be used as a term in an arithmetic
expression .

E.g.: we can write “x2+x+1” as “x2+O(x)” meaning
“x2 plus some function that is O(x)”.

• Formally, you can think of any such expression as
denoting a set of functions:

“x2+O(x)” :≡ {g | ∃f∈O(x): g(x)= x2+f(x)}

35

Useful Facts about Big O

• Constants ...
∀c>0, O(cf)=O(f+c)=O(f−c)=O(f)

• Sums:
- If g∈O(f) and h∈O(f), then g+h∈O(f).
- If g∈O(f1) and h∈O(f2), then

g+h∈O(f1+f2) =O(max(f1,f2))
(Very useful!)

36

More Big-O facts

• Products:
If g∈O(f1) and h∈O(f2), then gh∈O(f1f2)

• Big O, as a relation, is transitive:
f∈O(g) ∧ g∈O(h) → f∈O(h)

37

More Big O facts

• ∀ f,g & constants a,b∈R, with b≥0,
– af = O(f) (e.g. 3x2 = O(x2))
– f+O(f) = O(f) (e.g. x2+x = O(x2))
– |f|1-b = O(f) (e.g. x−1 = O(x))
– (logb |f|)a = O(f) (e.g. log x = O(x))
– g=O(fg) (e.g. x = O(x log x))
– fg ≠ O(g) (e.g. x log x ≠ O(x))
– a=O(f) (e.g. 3 = O(x))

38

Definition: Ω(g), at least order g
Let f,g be any function R→R.
• We say that “f is at least order g”, written Ω(g), if

∃c,k: f(x) ≥ cg(x), ∀x>k
– “Beyond some point k, function f is at least a constant c

times g (i.e., proportional to g).”
– Often, one deals only with positive functions and can

ignore absolute value symbols.

• “f is at least order g”, or “f is Ω(g)”, or “f= Ω(g)”
all just mean that f∈ Ω(g).

39

Big- Ω Visualization

40

Definition: Θ(g), exactly order g

• If f∈O(g) and g∈O(f) then we say “g and f
are of the same order” or “f is (exactly) order
g” and write f∈Θ(g).

• Another equivalent definition:
∃c1c2,k: c1g(x)≤f(x)≤c2g(x), ∀x>k

• “Everywhere beyond some point k, f(x) lies in
between two multiples of g(x).”

• Θ(g) ≡ O(g) ∩ Ω(g)
(i.e., f∈O(g) and f∈Ω(g))

41

Big- Θ Visualization

42

Rules for Θ

• Mostly like rules for O(), except:
• ∀ f,g>0 & constants a,b∈R, with b>0,

af ∈ Θ(f) ← Same as with O.
f ∉ Θ(fg) unless g=Θ(1) ← Unlike O.
|f| 1-b ∉ Θ(f), and ← Unlike with O.
(logb |f|)c ∉ Θ(f). ← Unlike with O.

• The functions in the latter two cases we say
are strictly of lower order than Θ(f).

43

Θ example

• Determine whether:
• Quick solution:

)(2
?

1
ni

n

i
Θ∈⎟

⎠

⎞
⎜
⎝

⎛∑
=

1

2

(1) / 2

() / 2
()

()

n

i
i n n

n n
n n

n

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
= ⋅Θ
= ⋅Θ

= Θ

∑

44

Other Order-of-Growth Relations

• o(g) = {f | ∀c ∃k: f(x) < cg(x), ∀x>k}
“The functions that are strictly lower order
than g.” o(g) ⊂ O(g) − Θ(g).

• ω(g) = {f | ∀c ∃k: cg(x) < f(x), ∀x>k }
“The functions that are strictly higher order
than g.” ω(g) ⊂ Ω(g) − Θ(g).

45

• Subset relations between order-of-growth
sets.

Relations Between the Relations

R→R
Ω(f)O(f)

Θ(f) ω(f)o(f)
• f

46

Strict Ordering of Functions

• Temporarily let’s write fpg to mean f∈o(g),
f~g to mean f∈Θ(g)

• Note that

• Let k>1. Then the following are true:
1 p log log n p log n ~ logk n p logk n
p n1/k p n p n log n p nk p kn p n! p nn …

.0
)(
)(lim =⇔

∞→ xg
xfgf

x
p

47

Common orders of magnitude

48

Review: Orders of Growth

Definitions of order-of-growth sets,
∀g:R→R

• O(g) ≡ {f | ∃ c,k: f(x) ≤ cg(x), ∀x>k }
• o(g) ≡ {f | ∀c ∃k: f(x) < cg(x),∀x>k }
• Ω(g) ≡ {f| | ∃c,k : f(x) ≥ cg(x),∀x>k }
• ω(g) ≡ {f | ∀ c ∃k: f(x) >cg(x), ∀x>k}
• Θ(g) ≡ {f | ∃c1c2,k: c1g(x)≤f(x)|≤c2g(x), ∀x>k}

49

Algorithmic and Problem
Complexity

Rosen 6th ed., §3.3

50

Algorithmic Complexity

• The algorithmic complexity of a
computation is some measure of how
difficult it is to perform the computation.

• Measures some aspect of cost of
computation (in a general sense of cost).

51

Problem Complexity

• The complexity of a computational problem
or task is the complexity of the algorithm
with the lowest order of growth of
complexity for solving that problem or
performing that task.

• E.g. the problem of searching an ordered list
has at most logarithmic time complexity.
(Complexity is O(log n).)

52

Tractable vs. Intractable Problems

• A problem or algorithm with at most
polynomial time complexity is considered
tractable (or feasible). P is the set of all
tractable problems.

• A problem or algorithm that has more than
polynomial complexity is considered
intractable (or infeasible).

53

Dealing with Intractable Problems

• Many times, a problem is intractable for a small
number of input cases that do not arise in practice
very often.
– Average running time is a better measure of problem

complexity in this case.
– Find approximate solutions instead of exact solutions.

54

Unsolvable problems

• It can be shown that there exist problems that no
algorithm exists for solving them.

• Turing discovered in the 1930’s that there are
problems unsolvable by any algorithm.

• Example: the halting problem (see page 176)
– Given an arbitrary algorithm and its input, will that

algorithm eventually halt, or will it continue forever in
an “infinite loop?”

55

NP and NP-complete

• NP is the set of problems for which there exists a
tractable algorithm for checking solutions to see if
they are correct.

• NP-complete is a class of problems with the
property that if any one of them can be solved by a
polynomial worst-case algorithm, then all of them
can be solved by polynomial worst-case
algorithms.
– Satisfiability problem: find an assignment of truth

values that makes a compound proposition true.

56

P vs. NP

• We know P⊆NP, but the most famous
unproven conjecture in computer science is
that this inclusion is proper (i.e., that P⊂NP
rather than P=NP).

• It is generally accepted that no NP-
complete problem can be solved in
polynomial time.

• Whoever first proves it will be famous!

57

Questions

• Find the best big-O notation to describe the
complexity of following algorithms:
– A linear search to find the largest number in a

list of n numbers (Algorithm 1)
– A linear search to arbitrary number (Algorithm

2)

58

Questions (cont’d)

– The number of print statements in the following
for (i=1, i≤n; i++)

for (j=1, j ≤n; j++)
print “hello”

	Analysis of Algorithms &�Orders of Growth
	Analysis of Algorithms
	Example: Searching
	Search alg. #1: Linear Search
	Search alg. #2: Binary Search
	Search alg. #2: Binary Search
	Is Binary Search more efficient?
	Is Binary Search more efficient?
	How do we analyze algorithms?
	Example (# of statements)
	How do we analyze algorithms?
	Computing running time
	Computing running time (cont.)
	Comparing Functions Using�Rate of Growth
	Rate of Growth ≡Asymptotic Analysis
	Example
	Visualizing Orders of Growth
	Big-O Notation
	More Examples …
	Big-O Visualization
	Computing running time
	Computing running time (cont.)
	Running time of various statements
	Examples
	Examples (cont.’d)
	Asymptotic Notation
	Definition: O(g), at most order g
	Big-O Visualization
	Points about the definition
	“Big-O” Proof Examples
	Big-O example, graphically
	Common orders of magnitude
	Slide Number 33
	Order-of-Growth in Expressions
	Useful Facts about Big O
	More Big-O facts
	More Big O facts
	Definition: (g), at least order g
	Big- Visualization
	Definition: (g), exactly order g
	Big- Visualization
	Rules for
	 example
	Other Order-of-Growth Relations
	Relations Between the Relations
	Strict Ordering of Functions
	Common orders of magnitude
	Review: Orders of Growth
	Algorithmic and Problem Complexity
	Algorithmic Complexity
	Problem Complexity
	Tractable vs. Intractable Problems
	Dealing with Intractable Problems
	Unsolvable problems
	NP and NP-complete
	P vs. NP
	Questions
	Questions (cont’d)

