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Analysis of Algorithms &
Orders of Growth

Rosen 6th ed., §3.1-3.3
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Analysis of Algorithms

• An algorithm is a finite set of precise instructions 
for performing a computation or for solving a 
problem.

• What is the goal of analysis of algorithms?
– To compare algorithms mainly in terms of running time 

but also in terms of other factors (e.g., memory 
requirements, programmer's effort etc.)

• What do we mean by running time analysis?
– Determine how running time increases as the size of 

the problem increases.
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Example: Searching 

• Problem of searching an ordered list.
– Given a list L of n elements that are sorted into 

a definite order (e.g., numeric, alphabetical),
– And given a particular element x,
– Determine whether x appears in the list, and if 

so, return its index (position) in the list.
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Search alg. #1: Linear Search

procedure linear search
(x: integer, a1, a2, …, an: distinct integers)
i := 1
while (i ≤ n ∧ x ≠ ai)

i := i + 1
if i ≤ n then location := i
else location := 0
return location {index or 0 if not found}
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Search alg. #2: Binary Search

• Basic idea: On each step, look at the middle
element of the remaining list to eliminate 
half of it, and quickly zero in on the desired 
element.

<x >x<x <x
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Search alg. #2: Binary Search

procedure binary search
(x:integer, a1, a2, …, an: distinct integers)
i := 1  {left endpoint of search interval}
j := n {right endpoint of search interval}
while i<j begin {while interval has >1 item}

m := ⎣(i+j)/2⎦ {midpoint}
if x>am then i := m+1 else j := m

end
if x = ai then location := i else location := 0
return location
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Is Binary Search more efficient?
• Number of iterations:

– For a list of n elements, Binary Search can 
execute at most log2 n times!!

– Linear Search, on the other hand, can execute up 
to n times !!

Average Number of Iterations
Length Linear Search Binary Search

10 5.5 2.9
100 50.5 5.8

1,000 500.5 9.0
10,000 5000.5 12.0
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Is Binary Search more efficient? 

• Number of computations per iteration:
– Binary search does more computations than 

Linear Search per iteration.
• Overall:

– If the number of components is small (say, less 
than 20), then Linear Search is faster.

– If the number of components is large, then 
Binary Search is faster.
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How do we analyze algorithms?

• We need to define a number of objective measures.

(1) Compare execution times? 
Not good: times are specific to a particular computer !!

(2) Count the number of statements executed?
Not good: number of statements vary with the   
programming language as well as the style of the 
individual programmer.
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Example (# of statements) 

Algorithm 1                         Algorithm 2

arr[0] = 0;                        for(i=0; i<N; i++)
arr[1] = 0;                          arr[i] = 0;
arr[2] = 0;
...
arr[N-1] = 0;
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How do we analyze algorithms?

(3) Express running time as a function of 
the input size n (i.e., f(n)).

– To compare two algorithms with running times 
f(n) and g(n), we need a rough measure of
how fast a function grows.

– Such an analysis is independent of machine 
time, programming style, etc.
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Computing running time
• Associate a "cost" with each statement and find the 

"total cost“ by finding the total number of times 
each statement is executed.

• Express running time in terms of the size of the 
problem.
Algorithm 1                         Algorithm 2

Cost                                             Cost
arr[0] = 0;         c1             for(i=0; i<N; i++)          c2
arr[1] = 0;         c1                 arr[i] = 0;                  c1
arr[2] = 0;         c1
...
arr[N-1] = 0;     c1

----------- -------------
c1+c1+...+c1 = c1 x N             (N+1) x c2 + N x c1 = 

(c2 + c1) x N + c2
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Computing running time (cont.)

Cost 
sum = 0;                                 c1 
for(i=0; i<N; i++)                     c2

for(j=0; j<N; j++)                  c2 
sum += arr[i][j];               c3

------------
c1 + c2 x (N+1) + c2 x N x (N+1) + c3 x N x N
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Comparing Functions Using
Rate of Growth

• Consider the example of buying elephants and 
goldfish:

Cost: cost_of_elephants + cost_of_goldfish
Cost ~ cost_of_elephants (approximation)

• The low order terms in a function are relatively 
insignificant for large n

n4 + 100n2 + 10n + 50    ~     n4

i.e., n4 + 100n2 + 10n + 50 and n4 have the same
rate of growth
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Rate of Growth ≡Asymptotic Analysis

• Using rate of growth as a measure to compare 
different functions implies comparing them 
asymptotically.

• If f(x) is faster growing than g(x), then f(x) 
always eventually becomes larger than g(x) in 
the limit (for large enough values of x).
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Example

• Suppose you are designing a web site to process 
user data (e.g., financial records).

• Suppose program A takes fA(n)=30n+8
microseconds to process any n records, while 
program B takes fB(n)=n2+1 microseconds to 
process the n records.

• Which program would you choose, knowing 
you’ll want to support millions of users?
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Visualizing Orders of Growth

• On a graph, as
you go to the
right, a faster
growing
function
eventually
becomes
larger... 

fA(n)=30n+8

Increasing n →

fB(n)=n2+1

Va
lu

e 
of

 fu
nc

tio
n 
→



18

Big-O Notation

• We say fA(n)=30n+8 is order n, or O(n).  
It is, at most, roughly proportional to n.

• fB(n)=n2+1 is order n2, or O(n2). It is, at 
most, roughly proportional to n2.

• In general, an O(n2) algorithm will be 
slower than O(n) algorithm.

• Warning: an O(n2) function will grow 
faster than an O(n) function.
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More Examples …

• We say that n4 + 100n2 + 10n + 50 is of the 
order of n4 or O(n4)

• We say that 10n3 + 2n2 is O(n3)    
• We say that n3 - n2 is O(n3)
• We say that 10 is O(1), 
• We say that 1273 is O(1)
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Big-O Visualization
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Computing running time
Algorithm 1                         Algorithm 2

Cost                                             Cost
arr[0] = 0;         c1             for(i=0; i<N; i++)          c2
arr[1] = 0;         c1                 arr[i] = 0;                  c1
arr[2] = 0;         c1
...
arr[N-1] = 0;     c1

----------- -------------
c1+c1+...+c1 = c1 x N             (N+1) x c2 + N x c1 = 

(c2 + c1) x N + c2

O(n)
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Computing running time (cont.)

Cost 

sum = 0;                                 c1 
for(i=0; i<N; i++)                     c2

for(j=0; j<N; j++)                  c2 
sum += arr[i][j];               c3

------------
c1 + c2 x (N+1) + c2 x N x (N+1) + c3 x N x N

O(n2)
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Running time of various statements
while-loop for-loop
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i = 0;
while (i<N) {

X=X+Y;                     // O(1)
result = mystery(X);  // O(N), just an example...
i++; // O(1)

}
• The body of the while loop:  O(N)
• Loop is executed: N times

N x O(N) = O(N2)

Examples
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if (i<j)
for ( i=0; i<N; i++ )

X = X+i;
else

X=0;

Max ( O(N), O(1) ) = O (N)

O(N)

O(1)

Examples (cont.’d)
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Asymptotic Notation

• O notation: asymptotic “less than”: 

– f(n)=O(g(n)) implies:  f(n) “≤” g(n)

• Ω notation: asymptotic “greater than”: 

– f(n)= Ω (g(n)) implies: f(n) “≥” g(n)

• Θ notation: asymptotic “equality”: 

– f(n)= Θ (g(n)) implies: f(n) “=” g(n)
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Definition: O(g), at most order g

Let f,g are functions R→R.
• We say that “f is at most order g”, if: 

∃c,k: f(x) ≤ cg(x), ∀x>k
– “Beyond some point k, function f is at most a 

constant c times g (i.e., proportional to g).”
• “f is at most order g”, or “f is O(g)”, or 

“f=O(g)” all just mean that f∈O(g).
• Sometimes the phrase “at most” is omitted.
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Big-O Visualization

k
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Points about the definition

• Note that f is O(g) as long as any values of c
and k exist that satisfy the definition.

• But: The particular c, k, values that make 
the statement true are not unique: Any 
larger value of c and/or k will also work.

• You are not required to find the smallest c
and k values that work.  (Indeed, in some 
cases, there may be no smallest values!)

However, you should prove that the values you choose do work.
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“Big-O” Proof Examples

• Show that 30n+8 is O(n).
– Show ∃c,k: 30n+8 ≤ cn, ∀n>k .

• Let c=31, k=8.  Assume n>k=8.  Then
cn = 31n = 30n + n > 30n+8, so 30n+8 < cn.

• Show that n2+1 is O(n2).
– Show ∃c,k: n2+1 ≤ cn2,  ∀n>k: .

• Let c=2, k=1.  Assume n>1.  Then 
cn2 = 2n2 = n2+n2 > n2+1, or n2+1< cn2.
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• Note 30n+8 isn’t
less than n
anywhere (n>0).

• It isn’t even
less than 31n
everywhere.

• But it is less than
31n everywhere to
the right of n=8. 

n>k=8 →

Big-O example, graphically

Increasing n →
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n

30n+8
cn =
31n

30n+8
∈O(n)
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Common orders of magnitude
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Order-of-Growth in Expressions

• “O(f)” can be used as a term in an arithmetic 
expression .

E.g.:  we can write “x2+x+1” as “x2+O(x)” meaning 
“x2 plus some function that is O(x)”.

• Formally, you can think of any such expression as 
denoting a set of functions:

“x2+O(x)” :≡ {g | ∃f∈O(x): g(x)= x2+f(x)}
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Useful Facts about Big O

• Constants ... 
∀c>0, O(cf)=O(f+c)=O(f−c)=O(f)

• Sums:
- If g∈O(f) and h∈O(f), then g+h∈O(f).
- If g∈O(f1) and h∈O(f2), then 

g+h∈O(f1+f2) =O(max(f1,f2))
(Very useful!)
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More Big-O facts

• Products:
If g∈O(f1) and h∈O(f2), then  gh∈O(f1f2) 

• Big O, as a relation, is transitive: 
f∈O(g) ∧ g∈O(h) → f∈O(h)
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More Big O facts

• ∀ f,g & constants a,b∈R, with b≥0,
– af = O(f)               (e.g. 3x2 = O(x2))
– f+O(f) = O(f)       (e.g. x2+x = O(x2))
– |f|1-b = O(f)            (e.g. x−1 = O(x))
– (logb |f|)a = O(f)    (e.g. log x = O(x))
– g=O(fg) (e.g. x = O(x log x))
– fg ≠ O(g) (e.g. x log x ≠ O(x))
– a=O(f)                  (e.g. 3 = O(x))
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Definition: Ω(g), at least order g
Let f,g be any function R→R.
• We say that “f is at least order g”, written Ω(g), if   

∃c,k: f(x) ≥ cg(x), ∀x>k
– “Beyond some point k, function f is at least a constant c

times g (i.e., proportional to g).”
– Often, one deals only with positive functions and can 

ignore absolute value symbols.

• “f is at least order g”, or “f is Ω(g)”, or “f= Ω(g)” 
all just mean that f∈ Ω(g).
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Big- Ω Visualization



40

Definition: Θ(g), exactly order g

• If f∈O(g) and g∈O(f) then we say “g and f 
are of the same order” or “f is (exactly) order 
g” and write f∈Θ(g).

• Another equivalent definition:
∃c1c2,k: c1g(x)≤f(x)≤c2g(x), ∀x>k

• “Everywhere beyond some point k, f(x) lies in 
between two multiples of g(x).”

• Θ(g) ≡ O(g) ∩ Ω(g)   
(i.e., f∈O(g) and f∈Ω(g) )
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Big- Θ Visualization



42

Rules for Θ

• Mostly like rules for O( ), except:
• ∀ f,g>0 & constants a,b∈R, with b>0,

af ∈ Θ(f) ← Same as with O.
f ∉ Θ(fg) unless g=Θ(1)  ← Unlike O.
|f| 1-b ∉ Θ(f), and          ← Unlike with O.
(logb |f|)c ∉ Θ(f).           ← Unlike with O.

• The functions in the latter two cases we say 
are strictly of lower order than Θ(f).
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Θ example

• Determine whether:
• Quick solution:
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Other Order-of-Growth Relations

• o(g) = {f | ∀c ∃k: f(x) < cg(x), ∀x>k}
“The functions that are strictly lower order 
than g.”  o(g) ⊂ O(g) − Θ(g).

• ω(g) = {f | ∀c ∃k: cg(x) < f(x), ∀x>k }
“The functions that are strictly higher order 
than g.” ω(g) ⊂ Ω(g) − Θ(g).
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• Subset relations between order-of-growth 
sets.

Relations Between the Relations

R→R
Ω( f )O( f )

Θ( f ) ω( f )o( f )
• f
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Strict Ordering of Functions

• Temporarily let’s write fpg to mean f∈o(g),
f~g to mean f∈Θ(g)

• Note that 

• Let k>1.  Then the following are true:
1 p log log n p log n ~ logk n p logk n
p n1/k p n p n log n p nk p kn p n! p nn … 

.0
)(
)(lim =⇔

∞→ xg
xfgf

x
p
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Common orders of magnitude
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Review: Orders of Growth

Definitions of order-of-growth sets, 
∀g:R→R

• O(g) ≡ {f | ∃ c,k: f(x) ≤ cg(x), ∀x>k }
• o(g) ≡ {f | ∀c ∃k: f(x) < cg(x),∀x>k }
• Ω(g) ≡ {f| | ∃c,k : f(x) ≥ cg(x),∀x>k } 
• ω(g) ≡ {f | ∀ c ∃k: f(x) >cg(x), ∀x>k}
• Θ(g) ≡ {f | ∃c1c2,k: c1g(x)≤f(x)|≤c2g(x), ∀x>k}
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Algorithmic and Problem 
Complexity

Rosen 6th ed., §3.3
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Algorithmic Complexity

• The algorithmic complexity of a 
computation is some measure of how 
difficult it is to perform the computation.

• Measures some aspect of cost of 
computation (in a general sense of cost).
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Problem Complexity

• The complexity of a computational problem
or task is the complexity of the algorithm 
with the lowest order of growth of 
complexity for solving that problem or 
performing that task.

• E.g. the problem of searching an ordered list 
has at most logarithmic time complexity.  
(Complexity is O(log n).)
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Tractable vs. Intractable Problems

• A problem or algorithm with at most
polynomial time complexity is considered 
tractable (or feasible).  P is the set of all 
tractable problems.

• A problem or algorithm that has more than 
polynomial complexity is considered 
intractable (or infeasible).
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Dealing with Intractable Problems

• Many times, a problem is intractable for a small 
number of input cases that do not arise in practice 
very often.
– Average running time is a better measure of problem 

complexity in this case.
– Find approximate solutions instead of exact solutions.
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Unsolvable problems

• It can be shown that there exist problems that no 
algorithm exists for solving them.

• Turing discovered in the 1930’s that there are 
problems unsolvable by any algorithm.

• Example: the halting problem (see page 176)
– Given an arbitrary algorithm and its input, will that 

algorithm eventually halt, or will it continue forever in 
an “infinite loop?”



55

NP and NP-complete 

• NP is the set of problems for which there exists a 
tractable algorithm for checking solutions to see if 
they are correct.

• NP-complete is a class of problems with the 
property that if any one of them can be solved by a 
polynomial worst-case algorithm, then all of them 
can be solved by polynomial worst-case 
algorithms.
– Satisfiability problem: find an assignment of truth 

values that makes a compound proposition true.
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P vs. NP

• We know P⊆NP, but the most famous 
unproven conjecture in computer science is 
that this inclusion is proper (i.e., that P⊂NP
rather than P=NP).

• It is generally accepted that no NP-
complete problem can be solved in 
polynomial time.

• Whoever first proves it will be famous!
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Questions

• Find the best big-O notation to describe the 
complexity of following algorithms:
– A linear search to find the largest number in a 

list of n numbers (Algorithm 1)
– A linear search to arbitrary number (Algorithm 

2)
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Questions (cont’d)

– The number of print statements in the following
for (i=1, i≤n; i++)

for (j=1, j ≤n; j++)
print “hello”
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