Analysis of Algorithms &
Orders of Growth

Analysis of Algorithms

« An algorithm is a finite set of precise instructions
for performing a computation or for solving a
problem.

 What is the goal of analysis of algorithms?

— To compare algorithms mainly in terms of running time
but also in terms of other factors (e.g., memory

requirements, programmer's effort etc.)
 What do we mean by running time analysis?

— Determine how running time increases as the size of
the problem increases.

Example: Searching .

» Problem of searching an ordered list.

— Gi1ven a list L of n elements that are sorted into
a definite order (e.g., numeric, alphabetical),

— And given a particular element X,

— Determine whether x appears in the list, and 1f
so, return 1ts index (position) in the list.

Search alg. #1: Linear Search &

procedure linear search
(X: integer, a,, a,, ..., &,: distinct integers)

while (I<n A X#a,)
| c=1+1
if 1 <n then location =1
else location =0
return location {index or 0 if not found}

Search alg. #2: Binary Search

 Basic idea: On each step, look at the middle
element of the remaining list to eliminate
half of 1t, and quickly zero in on the desired

element.

Search alg. #2: Binary Search &

procedure binary search
(X:1nteger, a,, a,, ..., a,: distinct integers)
| =1 {left endpoint of search interval}

J = n {right endpoint of search interval}
while I<] begin {while interval has >1 item}
m :=L(i+j)/2] {midpoint}
if x>a_then1 Z=m+1 else] 2=m
end
if X = a, then location == else location :=0
return location

Is Binary Search more efficient?

e Number of iterations:

— For a list of n elements, Binary Search can
execute at most log, n times!!

— Linear Search, on the other hand, can execute up
to n times !!

Average Number of Iterations

Length Linear Search Binary Search
10 5.5 2.9
100 50.5 5.8
1,000 500.5 9.0
10,000 5000.5 12.0

Is Binary Search more efficient? &

 Number of computations per iteration:

— Binary search does more computations than
Linear Search per 1iteration.

e Overall:

— If the number of components 1s small (say, less
than 20), then Linear Search 1s faster.

— If the number of components 1s large, then
Binary Search 1s faster.

How do we analyze algorithms?

 We need to define a number of objective measures.

(1) Compare execution times?
Not good: times are specific to a particular computer !!

(2) Count the number of statements executed?

Not good: number of statements vary with the
programming language as well as the style of the
individual programmer.

Example (# of statements)

Algorithm 1 Algorithm 2

arr[0 : for(i=0; I<N; i1++)
arr[1] ; arr[i] = 0;
arr[2]

arr[N-1] = O;

How do we analyze algorithms? &

(3) Express running time as a function of
the input size n (i.e., f(n)).
— To compare two algorithms with running times

f(n) and g(n), we need a rough measure of
how fast a function grows.

— Such an analysis 1s independent of machine
time, programming style, etc.

Computing running time

 Associate a "cost" with each statement and find the
"total cost by finding the total number of times
each statement 1s executed.

« Express running time in terms of the size of the
problem.
Algorithm 1 Algorithm 2

Cost Cost
arr[0] = O; cl for(i=0; I<N; i++) c2
arr[1] = 0; cl arrfi] = 0; cl
arr[2] = 0;

arr[N-1] = 0:

cl+cl+...+cl=clx N (N+1)xc2+Nxcl=
(c2+cl)x N +c2

Computing running time (cont.)

sum = 0;

for(1=0; I<N; I1++)
for(J=0; J<N; j++)
sum += artr|i][j];

Cl+C2X(N+I)+Cc2XNX(N+1)+c3xNxN

- Comaring Functions Using .
Rate of Growth ”

» Consider the example of buying elephants and
goldfish:
Cost: cost of elephants + cost of goldfish

Cost ~ cost of elephants (approximation)

e The low order terms 1n a function are relatively
insignificant for large n

n*+100n?+ 10n+50 ~ n*

l.e., n*+ 100n% + 10n + 50 and n* have the same
rate of growth

Rate of Growth =Asymptotic Analysis %

 Using rate of growth as a measure to compare
different functions implies comparing them
asymptotically.

 If f(x) 1s faster growing than g(x), then f(x)
always eventually becomes larger than g(X) in |
the limit (for large enough values of X).

* Suppose you are designing a web site to process
user data (e.g., financial records).

« Suppose program A takes f,(n)=30n+8

microseconds to process any n records, while
program B takes fz(n)=n?+1 microseconds to
process the n records.

* Which program would you choose, knowing
you’ll want to support millions of users?

Visualizing Orders of Growth

* On a graph, as
you go to the
right, a faster
growing
function
eventually
becomes
larger... Increasing n —

-
o
=
Q
-
2
€
o
Q
=
<
=

Bi1g-O Notation k!

« We say ,(n)=30n+8 is order n, or O(n).
It is, at most, roughly proportional to n.

« fo(N)=n’+1 is order n?, or O(n?). It is, at

most, roughly proportional to n2.

 In general, an O(n?) algorithm will be
slower than O(n) algorithm.

« Warning: an O(n?) function will grow
faster than an O(n) function.

More Examples ... _

« We say that n* + 100n% + 10n + 50 is of the
order of n* or O(n%)

We say that 10n3 + 2n? is O(n?)
We say that n° - n? is O(n?)

We say that 10 1s O(1),

We say that 1273 1s O(1)

Big-O Visualization

O(N3
O(N)

2
2M+10 2M =10N 4100

IN_1 100N YON+5 9

100
3 100N

O(NlogN)
BMN+10 2M-1
10NlogMN-10M+1

Niogn+100N

Computing running time

Algorithm 1 Algorithm 2

Cost Cost
arr| ; cl for(i=0; i<N; 1++) c2
arr| ; arrfi] = 0; cl
arr| ;

arr[N-

cl+cl+...+cl=clx N (N+1)xc2+Nxcl=

(c2+cl)x N +c2
N
O(n)

Computing running time (cont.)

sum = 0;
for(i=0; I<N; I++)

for(J=0; J<N; J++)
sum += arr|i][j];

Cl +C2X(N+1)+Cc2XNX(N+I)+c3xNxN
O(n?

Running time of various statements

while-loop for-loop

l @iaﬁzc

At most Sl
Qrglnifing) gln) times
around

Oufin}

Qrfind)

Beinitialize

if—statement block of statements

QL2000+ Hkin)=
Otmax(fin).gln)) OimaxifLin) 2 n), ... o))

Orfin}) Qiglod)

1 = 0;
while (1<N) {
X=X+Y;
result = mystery(X);

i++:

}
* The body of the while loop: O(N)

* Loop 1s executed: N times

Examples (cont.’d)

if (<))
for (1=0; I<N; I++)
X = X+I;
else
X=0;

Max (O(N), O(1)) = O (N)

Asymptotic Notation

* O notation: asymptotic “less than”:
— f(n)=0(g(n)) implies: f(n) “<” g(n)

« () notation: asymptotic “greater than”:
— f(n)=Q (g(n)) implies: f(n) “>" g(n)

* O notation: asymptotic “equality’:

— f(n)= 0O (g(n)) implies: f(n) “=" g(n)

Definition: O(g), at most order g &

Let f,g are functions R—>R.

« We say that “f is at most order g”, if:

dc,k: f(X) < cg(X), VXx>k

— “Beyond some point K, function f is at most a
constant ¢ times g (I.e., proportional to g).”

« “f1is at most order g”, or “f 1s O(g)”’, or
“t=0(Q)” all just mean that fe O(g).

* Sometimes the phrase “at most” 1s omitted.

Bi1g-O Visualization

n

g(n) 1s an asymptotic upper bound tor f (n).

Points about the definition

* Note that f 1s O(Q) as long as any values of ¢
and Kk exist that satisfy the definition.

» But: The particular c, k, values that make
the statement true are Not unique: Any
larger value of ¢ and/or k will also work.

* You are not required to find the smallest C
and k values that work. (Indeed, in some
cases, there may be no smallest values!)

8 However, you should prove that the values you choose do work.

"Big-O” Proof Examples _

* Show that 30n+8 1s O(n).

— Show 3c.k: 30n+8 < cn, Vn>k .
e Letc=31, k=8. Assume n>k=8. Then

cn=31n=30n+ n>30n+8, so 30n+8 < cn.

« Show that n*+1 is O(n?).

— Show 3c.k: n*+1 <cn?, Vn>k:.
e Letc=2, k=1. Assume n>1. Then
cn? = 2n? = n2+n > n+1, or n*+1< cn2.

Big-O example, graphically &

« Note 30n+8 isn’t |
less than n
anywhere (n>0).
It 1sn’t even

less than 31n
everywhere.

But it IS less than

31n everywhere to .
the right of n=8. Increasing n —

-
o
=
Q
-
2
€
o
Q
=
<
=

31072

63,530 —

5 I i r ‘_| N
'y e
i 32765 L

B9 -
4,006
| -
2,048 —

ol
1024 |

: Jr |
. : 28 256 512 1024

i

10
20
30
BT
il
iz
10?
| 10°
10*
T
[ig
[
107

0003 pes®
0004 pes
0.005 pes
L0035 s
0005 s
0007 s
0010 ps
L3 s
0017 s
0020 s
0023 us
0.027 us
CLOD s

in) =n

fla) = nlga

Table 1.4 Execution times for algorithms with the given time complexities

f(n) = n*

fln) = n?

0.01 ps
0.02 L5
(L0353 s
(L0 s
005 s
10 ps
1O s
0 ps
0,10 ms
I ms
.01 =
015

l 5

b L

w0 weomd.

loms = 1077 zemond.

(L0323 s
0086 s
0,147 ps
213 us
0,282 us
0664 s
9966 s

130 s

L&/ ms
1993 ms
(.23 5
2066 5
209 5

0.1 g5
4 ps
0,9 p=
1.6 s
2.5 s
10 s
I ms
OO s
10 5
16,7 min
1.16 days
113.7 days
3.7 years

| s
L RTES
27 us
64 pes
25 us
1 ms
Is
6.7 min
| 1.6 days
31.7 yzars
31,708 vears
317 = 107 vears

Jin) = &

- S

L ms

L%
18.3 min
15 days

t

4 % 10% vears

Order-of-Growth 1n Expressions %

* “O(f)” can be used as a term in an arithmetic
expression .

E.g.: we can write “X*+x+1” as “X>+0O(X)” meaning

“x? plus some function that is O(x)”.

* Formally, you can think of any such expression as
denoting a set of functions:

“X2+0(x)” := {g | IFeOX): g(x)= x2+(X)}

Usetul Facts about Big O _

e Constants ...

v >0, O(cf)=0(f+c)=0(f—c)=0(f)

* Sums:
- If ge O(f) and heO(f), then g+heO(¥).

- If ge O(f,) and heO(f,), then
g+heO(f,+f,) =O(max(f,,f,))
(Very useful!)

More Bi1g-O facts

e Products:
If geO(f,) and heO(f,), then gheO(f,f,)

» Big O, as a relation, is transitive:
feO(g) A geO(h) —> feO(h)

More Big O facts _

« V f,g & constants a,beR, with b>0,
— af = O(f) (e.g. 3x2= 0(x?))
—f+O(f) = O(f) (e.g. x*+x = O(x?))

—|f|'*=O(f) (e.9. x™'=O(x))
— (log, [f{)2=0O(f) (e.g. log x=0(x))
- g=0(fg) (€.9. x = O(x log X))
—fg = O(Q) (e.g. X log x # O(X))
—a=0(f) (e.g9. 3 = 0O(X))

Definition: €2(g), at least order g

Let f,g be any function R—>R.

« We say that “f Is at_least order g”, written €Q(Q), if
dc,k: f(X) = cg(x), Vx>k
— “Beyond some point K, function f is at least a constant C
times g (I.e., proportional to g).”
— Often, one deals only with positive functions and can
ignore absolute value symbols.
« “fis at least order g”, or “f 1s 2(g)”’, or “f= Q(g)”
all just mean that fe Q(g).

Big- €2 Visualization

g(n) 1s an asymptotic lower bound tor f (n).

Definition: ®(g), exactly order g -

If feOg) and gO(f) then we say “g and f
are of the same order” or “f is (exactly) order
g~ and write fe ®(Q).

Another equivalent definition:

dc,c,,k: ¢,g(x)<f(x)<c,g(x), VXx>k
“Everywhere beyond-some point K, f(X) lies in |
between two iples of g(x).”
©(9) = 0(9) N €X(g)
(i.e., feO(Q) and fe€2(Q))

Big- ® Visualization

g(n) 1s an asymptotically tight bound for f(n).

Rules for ® A

* Mostly like rules for O(), except:

« VY f,0>0 & constants a,beR, with b>0,
af € O(f) < Same as with O.

f ¢ ®(fg) unless g=G(1) <« Unlike O.
f| -* ¢ ©(f), and < Unlike with O.
(log, [f])¢ ¢ O(f). < Unlike with O.

» The functions in the latter two cases we say
are strictly of lower order than ®(f).

e Determine whether: [j‘?

c®(n?)

>

* Quick solution:

Other Order-of-Growth Relations &

* o(g) = {f| Vc Ik: f(x) < cg(x), x>k}
“The functions that are strictly lower order
than g.” o(g) < O(g) — ©(9).

« »(g) = {f| Vc Ik: cg(X) < f(x), Vx>k }
“The functions that are strictly higher order
than g.” o(g) < Q(g) — ©(Q).

* Relations Between the Relations &
* Subset relations between order-of-growth
sets.

O(f) Q(f)

ece

Strict Ordering of Functions _

« Temporarily let’s write f<g to mean feo(Q),
f~g to mean fe®(Q)

« Note that f(X) 0

f<g<lim—=
== g(X)
* Let k>1. Then the following are true:
1 <log log n <log n~log, n < logkn
<n*<n<nlogh<nfk<k"<n!'<n"..

31072

63,530 —

5 I i r ‘_| N
'y e
i 32765 L

B9 -
4,006
| -
2,048 —

ol
1024 |

: Jr |
. : 28 256 512 1024

Review: Orders of Growth ._

Definitions of order-of-growth sets,
Vg:R—R

« O(g) = {f| 3 ck: f(x) <cg(x), Vx>k }

« 0o(g)= {f| Vc 3k: f(X) <cg(x),vx>k }

« Q(g) = {f| | dc,k : f(X) = cg(x),Vx>k }

« o(g) = {f| V¥ c Ik: f(x) >cg(x), Vx>k}

+ O(g) = {f| 3c,C, k: ¢,gM)<f(x)|<c,g(x), Vx>k} |

gorithmic and Problem
Complexity

Algorithmic Complexity _

« The algorithmic complexity of a
computation 1s some measure of how
difficult it 1s to perform the computation.

* Measures some aspect of cost of
computation (in a general sense of cost).

Problem Complexity k:

* The complexity of a computational problem
or task is the complexity of the algorithm
with the lowest order of growth of
complexity for solving that problem or
performing that task.

* E.g. the problem of searching an ordered list
has at most logarithmic time complexity.
(Complexity 1s O(log n).)

Tractable vS. Intractable Problems _

* A problem or algorithm with at most
polynomial time complexity 1s considered
tractable (or feasible). P is the set of all
tractable problems.

e A problem or algorithm that has more than
polynomial complexity 1s considered
Intractable (or infeasible).

Dealing with Intractable Problems

 Many times, a problem 1s intractable for a small
number of input cases that do not arise 1n practice
very often.

— Average running time is a better measure of problem
complexity in this case.

— Find approximate solutions instead of exact solutions.

Unsolvable problems

It can be shown that there exist problems that no
algorithm exists for solving them.

Turing discovered in the 1930’s that there are
problems unsolvable by any algorithm.

Example: the halting problem (see page 176)

— Given an arbitrary algorithm and its input, will that
algorithm eventually halt, or will it continue forever in
an “infinite loop?”

NP and NP-complete

* NP is the set of problems for which there exists a
tractable algorithm for checking solutions to see if
they are correct.

NP-complete 1s a class of problems with the
property that if any one of them can be solved by a
polynomial worst-case algorithm, then all of them
can be solved by polynomial worst-case
algorithms.

— Satisfiability problem: find an assignment of truth
values that makes a compound proposition true.

* We know PcNP, but the most famous
unproven conjecture in computer science 1s [
that this inclusion is proper (i.e., that PCNP

rather than P=NP).

* It 1s generally accepted that no NP-
complete problem can be solved in
polynomial time.

 Whoever first proves it will be famous!

* Find the best big-O notation to describe the
complexity of following algorithms:

— A linear search to find the largest number 1n a
list of n numbers (Algorithm 1)

— A linear search to arbitrary number (Algorithm
2)

Questions (cont’d)

— The number of print statements in the following

for (I=1, i<n; 1++)
for (j=1, j =n; j++)
print “hello”

	Analysis of Algorithms &�Orders of Growth
	Analysis of Algorithms
	Example: Searching
	Search alg. #1: Linear Search
	Search alg. #2: Binary Search
	Search alg. #2: Binary Search
	Is Binary Search more efficient?
	Is Binary Search more efficient?
	How do we analyze algorithms?
	Example (# of statements)
	How do we analyze algorithms?
	Computing running time
	Computing running time (cont.)
	Comparing Functions Using�Rate of Growth
	Rate of Growth ≡Asymptotic Analysis
	Example
	Visualizing Orders of Growth
	Big-O Notation
	More Examples …
	Big-O Visualization
	Computing running time
	Computing running time (cont.)
	Running time of various statements
	Examples
	Examples (cont.’d)
	Asymptotic Notation
	Definition: O(g), at most order g
	Big-O Visualization
	Points about the definition
	“Big-O” Proof Examples
	Big-O example, graphically
	Common orders of magnitude
	Slide Number 33
	Order-of-Growth in Expressions
	Useful Facts about Big O
	More Big-O facts
	More Big O facts
	Definition: (g), at least order g
	Big-  Visualization
	Definition: (g), exactly order g
	Big-  Visualization
	Rules for 
	 example
	Other Order-of-Growth Relations
	Relations Between the Relations
	Strict Ordering of Functions
	Common orders of magnitude
	Review: Orders of Growth
	Algorithmic and Problem Complexity
	Algorithmic Complexity
	Problem Complexity
	Tractable vs. Intractable Problems
	Dealing with Intractable Problems
	Unsolvable problems
	NP and NP-complete
	P vs. NP
	Questions
	Questions (cont’d)

