Analysis of Algorithms & Orders of Growth

Rosen 6th ed., §3.1-3.3

Analysis of Algorithms

- An *algorithm* is a finite set of precise instructions for performing a computation or for solving a problem.
- What is the goal of analysis of algorithms?
 - To compare algorithms mainly in terms of running time but also in terms of other factors (e.g., memory requirements, programmer's effort etc.)
- What do we mean by running time analysis?
 - Determine how running time increases as the size of the problem increases.

Example: Searching

- Problem of *searching* an ordered list.
 - Given a list L of n elements that are sorted into a definite order (e.g., numeric, alphabetical),
 - And given a particular element x,
 - Determine whether x appears in the list, and if so, return its index (position) in the list.

Search alg. #1: Linear Search

procedure linear search

(x: integer, $a_1, a_2, ..., a_n$: distinct integers) i := 1

while
$$(i \le n \land x \ne a_i)$$

 $i = i + 1$

if $i \le n$ then *location* :: = *i* else *location* :: = 0 return *location* {index or 0 if not found}

Search alg. #2: Binary Search

• Basic idea: On each step, look at the *middle* element of the remaining list to eliminate half of it, and quickly zero in on the desired element.

Search alg. #2: Binary Search

procedure binary search

(x:integer, $a_1, a_2, ..., a_n$: distinct integers) i := 1 {left endpoint of search interval} j := n {right endpoint of search interval} while i < j begin {while interval has >1 item} $m := \lfloor (i+j)/2 \rfloor$ {midpoint}

if $x > a_m$ then i := m+1 else j := mend

if $x = a_i$ **then** *location* : = *i* **else** *location* : = 0 **return** *location*

Is Binary Search more efficient?

• Number of iterations:

- For a list of *n* elements, Binary Search can execute at most log₂ *n* times!!
- Linear Search, on the other hand, can execute up to *n* times !!

Average Number of Iterations								
Length	Linear Search	Binary Search						
10	5.5	2.9						
100	50.5	5.8						
1,000	500.5	9.0						
10,000	5000.5	12.0						

Is Binary Search more efficient?

• Number of computations per iteration:

 Binary search does more computations than Linear Search per iteration.

• Overall:

- If the number of components is small (say, less than 20), then Linear Search is faster.
- If the number of components is large, then Binary Search is faster.

How do we analyze algorithms?

- We need to define a number of objective measures.
 - (1) Compare execution times?
 Not good: times are specific to a particular computer !!
 - (2) Count the number of statements executed? *Not good*: number of statements vary with the programming language as well as the style of the individual programmer.

Example (# of statements)

Algorithm 1

Algorithm 2

arr[0] = 0;arr[1] = 0;arr[2] = 0; for(i=0; i<N; i++) arr[i] = 0;

10

arr[N-1] = 0;

How do we analyze algorithms?

- (3) Express running time as a function of the input size n (i.e., f(n)).
- To compare two algorithms with running times f(n) and g(n), we need a rough measure of how fast a function grows.
- Such an analysis is independent of machine time, programming style, etc.

Computing running time

- Associate a "cost" with each statement and find the "total cost" by finding the total number of times each statement is executed.
- Express running time in terms of the size of the problem.
 - Algorithm 1 Algorithm 2 Cost Cost arr[0] = 0;for(i=0; i<N; i++) c2 c1 arr[1] = 0;c1 arr[i] = 0;**c1** arr[2] = 0;c1 arr[N-1] = 0;c1 $c1+c1+...+c1 = c1 \times N$ $(N+1) \times c2 + N \times c1 =$ $(c2 + c1) \times N + c2$

Computing running time (cont.)

Cost

sum = 0; c1
for(i=0; i<N; i++) c2
for(j=0; j<N; j++) c2
sum += arr[i][j]; c3</pre>

c1 + c2 x (N+1) + c2 x N x (N+1) + c3 x N x N

Comparing Functions Using Rate of Growth

• Consider the example of buying *elephants* and *goldfish*:

Cost: cost_of_elephants + cost_of_goldfish **Cost** ~ cost_of_elephants (**approximation**)

• The low order terms in a function are relatively insignificant for **large** *n*

 $n^{4} + 100n^{2} + 10n + 50 \sim n^{4}$ *i.e.*, $n^{4} + 100n^{2} + 10n + 50$ and n^{4} have the same rate of growth

Rate of Growth ≡Asymptotic Analysis

- Using *rate of growth* as a measure to compare different functions implies comparing them **asymptotically**.
- If f(x) is faster growing than g(x), then f(x) always eventually becomes larger than g(x) in the limit (for large enough values of x).

Example

- Suppose you are designing a web site to process user data (*e.g.*, financial records).
- Suppose program A takes $f_A(n)=30n+8$ microseconds to process any *n* records, while program B takes $f_B(n)=n^2+1$ microseconds to process the *n* records.
- Which program would you choose, knowing you'll want to support millions of users?

Visualizing Orders of Growth

• On a graph, as you go to the right, a faster growing function eventually becomes larger...

Increasing $n \rightarrow$

Big-O Notation

- We say f_A(n)=30n+8 is order n, or O(n).
 It is, at most, roughly proportional to n.
- *f*_B(*n*)=*n*²+1 is *order n*², or O(*n*²). It is, at most, roughly proportional to *n*².
- In general, an O(n²) algorithm will be <u>slower</u> than O(n) algorithm.
- Warning: an $O(n^2)$ function will grow <u>faster</u> than an O(n) function.

More Examples ...

- We say that $n^4 + 100n^2 + 10n + 50$ is of the order of n^4 or $O(n^4)$
- We say that $10n^3 + 2n^2$ is $O(n^3)$
- We say that $n^3 n^2$ is $O(n^3)$
- We say that 10 is O(1),
- We say that 1273 is O(1)

Big-O Visualization

Computing running time

Algorithm 1	Cost	Algorithm 2	Cost
arr[0] = 0; arr[1] = 0; arr[2] = 0;	c1 c1 c1 c1	for(i=0; i <n; i++)<br="">arr[i] = 0;</n;>	c2 c1
arr[N-1] = 0;	c1		
c1+c1++c	$c1 = c1 \times N$ O(n)	(N+1) x c2 + N (c2 + c1) x	J x c1 = N + c2

Computing running time (cont.)

Cost

c1 + c2 x (N+1) + c2 x N x (N+1) + c3 x N x N $O(n^2)$

Running time of various statements

Examples

- The body of the while loop: O(N)
- Loop is executed: <u>N times</u>

 $N \ge O(N) = O(N^2)$

Examples (cont.'d)

Max (O(N), O(1)) = O(N)

Asymptotic Notation

- O notation: asymptotic "less than":
 - f(n)=O(g(n)) implies: $f(n) \leq g(n)$
- Ω notation: asymptotic "greater than":
 - $f(n) = \Omega(g(n))$ implies: $f(n) \stackrel{\text{``}}{\geq} g(n)$
- Θ notation: asymptotic "equality":
 - $f(n) = \Theta(g(n))$ implies: f(n) "=" g(n)

Definition: O(g), at most order g

Let *f*, *g* are functions $\mathbf{R} \rightarrow \mathbf{R}$.

- We say that "f is at <u>most</u> order g", if: $\exists c,k: f(x) \le cg(x), \forall x > k$
 - "Beyond some point k, function f is at most a constant c times g (i.e., proportional to g)."
- "*f* is at most order g", or "*f* is O(g)", or "*f*=O(g)" all just mean that $f \in O(g)$.
- Sometimes the phrase "at most" is omitted.

Big-O Visualization

cg(n)f(n)п k

g(n) is an *asymptotic upper bound* for f(n).

Points about the definition

- Note that f is O(g) as long as any values of c and k exist that satisfy the definition.
- But: The particular c, k, values that make the statement true are <u>not</u> unique: Any larger value of c and/or k will also work.
- You are **not** required to find the smallest *c* and *k* values that work. (Indeed, in some cases, there may be no smallest values!)

However, you should **prove** that the values you choose do work.

"Big-O" Proof Examples

- Show that 30n+8 is O(n).
 - Show $\exists c,k: 30n+8 \leq cn, \forall n > k$.
 - Let *c*=31, *k*=8. Assume *n*>*k*=8. Then *cn* = 31*n* = 30*n* + *n* > 30*n*+8, so 30*n*+8 < *cn*.
- Show that n^2+1 is $O(n^2)$.
 - Show $\exists c,k: n^2+1 \le cn^2$, $\forall n > k:$.
 - Let c=2, k=1. Assume n>1. Then

 $cn^2 = 2n^2 = n^2 + n^2 > n^2 + 1$, or $n^2 + 1 < cn^2$.

Big-O example, graphically

- Note 30*n*+8 isn't less than *n anywhere* (*n*>0).
- It isn't even less than 31*n* everywhere.
- But it *is* less than
 31n everywhere to the right of n=8.

Common orders of magnitude

32

Table 1.4 Execution times for algorithms with the given time complexities							
n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n) = n^2$	$f(n) = n^3$	$f(n) = 2^n$	
10	0.003 μs*	0.01 µs	0.033 μs	0.1 µs	1 μs	1 μs	
20	0.004 μs	0.02 µs	0.086 µs	$0.4 \ \mu s$	8 µs	1 ms [†]	
30	0.005 μs	0.03 µs	$0.147 \ \mu s$	0.9 µs	27 µs	i s	
40	0.005 μs	0.04 µs	0.213 µs	1.6 µs	64 µs	18.3 mir	
50	0.005 µs	0.05 µs	0.282 µs	2.5 µs	.25 μs	13 days	
10^{2}	0.007 µs	$0.10 \ \mu s$	0.664 µs	10 µs	1 ms	4×10^{15} years	
10 ³	0.010 µs	$1.00 \ \mu s$	9.966 µs	1 ms	1 s		
10^{4}	0.013 µs	.0 µs	130 µs	100 ms	16.7 min		
10 ⁵	0.017 µs	0.10 ms	1.67 ms	10 s	11.6 days		
10^{6}	$0.020 \ \mu s$	1 ms	19.93 ms	16.7 min	31.7 years		
107	0.023 µs	0.01 s	0.23 s	1.16 days	31,709 years		
10^{8}	0.027 µs	0.10 s	2.66 s	115.7 days	$3.17 \times 10^{\circ}$ years		
109	0.030 µs	1 s	29.90 s	31.7 years			

*1 $\mu s = 10^{-6}$ second. *1 ms = 10^{-3} second.

Order-of-Growth in Expressions

- "O(*f*)" can be used as a term in an arithmetic expression .
- *E.g.*: we can write " x^2+x+1 " as " $x^2+O(x)$ " meaning " x^2 plus some function that is O(x)".
- Formally, you can think of any such expression as denoting a set of functions:

 $``x^{2}+O(x)" := \{g \mid \exists f \in O(x): g(x)=x^{2}+f(x)\}$

Useful Facts about Big O

• Constants ...

 $\forall c \geq 0, O(cf) = O(f+c) = O(f-c) = O(f)$

- Sums:
 - If $g \in O(f)$ and $h \in O(f)$, then $g+h \in O(f)$.
 - If $g \in O(f_1)$ and $h \in O(f_2)$, then $g+h \in O(f_1+f_2) = O(\max(f_1,f_2))$ (Very useful!)

More Big-O facts

- Products:
 - If $g \in O(f_1)$ and $h \in O(f_2)$, then $gh \in O(f_1f_2)$

• Big O, as a relation, is <u>transitive</u>: $f \in O(g) \land g \in O(h) \rightarrow f \in O(h)$

More Big O facts

• $\forall f,g$ & constants $a,b \in \mathbf{R}$, with $b \ge 0$, -af = O(f)(e.g. $3x^2 = O(x^2)$) -f+O(f) = O(f) (e.g. $x^2+x = O(x^2)$) $- |f|^{1-b} = O(f)$ $(e.g. x^{-1} = O(x))$ $-(\log_b |f|)^a = \mathcal{O}(f)$ $(e.g. \log x = O(x))$ -g=O(fg) $(e.g. x = O(x \log x))$ $-fg \neq O(g)$ (e.g. $x \log x \neq O(x)$) -a=O(f)(e.g. 3 = O(x))

Definition: $\Omega(g)$, at least order g

Let *f*, *g* be any function $\mathbf{R} \rightarrow \mathbf{R}$.

- We say that "f is at <u>least</u> order g", written $\Omega(g)$, if $\exists c,k: f(x) \ge cg(x), \forall x > k$
 - "Beyond some point k, function f is at least a constant c times g (i.e., proportional to g)."
 - Often, one deals only with positive functions and can ignore absolute value symbols.
- "*f* is at least order g", or "*f* is $\Omega(g)$ ", or "*f*= $\Omega(g)$ " all just mean that $f \in \Omega(g)$.

Big- Ω Visualization

g(n) is an *asymptotic lower bound* for f(n).

Definition: $\Theta(g)$, exactly order g

- If f∈O(g) and g∈O(f) then we say "g and f are of the <u>same</u> order" or "f is (exactly) order g" and write f∈Θ(g).
- Another equivalent definition: $\exists c_1 c_2, k: c_1 g(x) \leq f(x) \leq c_2 g(x), \forall x > k$
- "Everywhere beyond some point k, f(x) lies in between two multiples of g(x)."
- $\Theta(g) \equiv O(g) \cap \Omega(g)$ (i.e., $f \in O(g)$ and $f \in \Omega(g)$)

Big-Θ Visualization

g(n) is an *asymptotically tight bound* for f(n).

Rules for Θ

- Mostly like rules for O(), except:
- $\forall f,g > 0$ & constants $a,b \in \mathbb{R}$, with b > 0, $af \in \Theta(f) \qquad \leftarrow \text{Same as with } O.$ $f \notin \Theta(fg) \text{ unless } g = \Theta(1) \leftarrow \text{Unlike } O.$ $|f|^{1-b} \notin \Theta(f), \text{ and } \leftarrow \text{Unlike with } O.$ $(\log_b |f|)^c \notin \Theta(f). \leftarrow \text{Unlike with } O.$
- The functions in the latter two cases we say are *strictly of lower order* than Θ(*f*).

Θ example

- Determine whether: (
- Quick solution:

$$\sum_{i=1}^{n} i \right)^{?} \in \Theta(n^{2})$$

$$\left(\sum_{i=1}^{n} i\right) = n(n+1)/2$$
$$= n(\Theta(n)/2)$$
$$= \Theta(n^{2})$$

Other Order-of-Growth Relations

• $o(g) = \{f \mid \forall c \exists k: f(x) < cg(x), \forall x > k\}$ "The functions that are <u>strictly lower</u> order than g." $o(g) \subset O(g) - \Theta(g)$.

• $\omega(g) = \{f \mid \forall c \exists k: cg(x) < f(x), \forall x > k \}$ "The functions that are <u>strictly higher</u> order than g." $\omega(g) \subset \Omega(g) - \Theta(g)$.

Relations Between the Relations

Subset relations between order-of-growth sets.

Strict Ordering of Functions

- Temporarily let's write $f \prec g$ to mean $f \in o(g)$, $f \sim g$ to mean $f \in \Theta(g)$
- Note that $f \prec g \Leftrightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$
- Let k > 1. Then the following are true: $1 \prec \log \log n \prec \log n \sim \log_k n \prec \log^k n$ $\prec n^{1/k} \prec n \prec n \log n \prec n^k \prec k^n \prec n! \prec n^n \dots$

Common orders of magnitude

47

Review: Orders of Growth

Definitions of order-of-growth sets, $\forall g: \mathbf{R} \rightarrow \mathbf{R}$

- $O(g) \equiv \{f \mid \exists c,k: f(x) \le cg(x), \forall x > k\}$
- $o(g) \equiv \{f \mid \forall c \exists k: f(x) < cg(x), \forall x > k \}$
- $\Omega(g) \equiv \{f \mid \exists c,k : f(x) \ge cg(x), \forall x \ge k\}$
- $\omega(g) \equiv \{f \mid \forall c \exists k: f(x) > cg(x), \forall x > k\}$
- $\Theta(g) \equiv \{f \mid \exists c_1 c_2, k: c_1 g(x) \leq f(x) \mid \leq c_2 g(x), \forall x > k\}$

Algorithmic and Problem Complexity

Rosen 6th ed., §3.3

Algorithmic Complexity

- The *algorithmic complexity* of a computation is some measure of how *difficult* it is to perform the computation.
- Measures some aspect of *cost* of computation (in a general sense of cost).

Problem Complexity

- The complexity of a computational *problem* or *task* is the complexity of <u>the algorithm</u> with the lowest order of growth of <u>complexity</u> for solving that problem or performing that task.
- *E.g.* the problem of searching an ordered list has *at most logarithmic* time complexity. (Complexity is O(log *n*).)

Tractable vs. Intractable Problems

- A problem or algorithm with <u>at most</u> polynomial time complexity is considered *tractable* (or *feasible*). P is the set of all tractable problems.
- A problem or algorithm that has more than polynomial complexity is considered *intractable* (or *infeasible*).

Dealing with Intractable Problems

- Many times, a problem is intractable for a small number of input cases that do not arise in practice very often.
 - Average running time is a better measure of problem complexity in this case.
 - Find approximate solutions instead of exact solutions.

Unsolvable problems

- It can be shown that there exist problems that no algorithm exists for solving them.
- Turing discovered in the 1930's that there are problems <u>unsolvable</u> by *any* algorithm.
- Example: the *halting problem (see page 176)*
 - Given an arbitrary algorithm and its input, will that algorithm eventually halt, or will it continue forever in an *"infinite loop?"*

NP and NP-complete

- NP is the set of problems for which there exists a tractable algorithm for *checking solutions* to see if they are correct.
- **NP-complete** is a class of problems with the property that if any one of them can be solved by a polynomial worst-case algorithm, then all of them can be solved by polynomial worst-case algorithms.
 - *Satisfiability problem*: find an assignment of truth values that makes a compound proposition true.

P vs. NP

- We know P⊆NP, but the most famous unproven conjecture in computer science is that this inclusion is *proper* (*i.e.*, that P⊂NP rather than P=NP).
- It is generally accepted that no NPcomplete problem can be solved in polynomial time.
- Whoever first proves it will be famous!

Questions

- Find the best big-O notation to describe the complexity of following algorithms:
 - A linear search to find the largest number in a list of n numbers (Algorithm 1)
 - A linear search to arbitrary number (Algorithm 2)

Questions (cont'd)

The number of print statements in the following for (i=1, i≤n; i++)
 for (j=1, j ≤n; j++)
 print "hello"