Set Theory

Introduction to Set Theory

- A set is a structure, representing an <u>unordered</u> collection (group, plurality) of zero or more <u>distinct</u> (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.

Basic notations for sets

- For sets, we'll use variables S, T, U, ...
- We can denote a set *S* in writing by listing all of its elements in curly braces:
 - {a, b, c} is the set of whatever 3 objects are denoted by a, b, c.
- Set builder notation: For any proposition P(x) over any universe of discourse, {x|P(x)} is the set of all x such that P(x).
 - e.g., $\{x \mid x \text{ is an integer where } x > 0 \text{ and } x < 5 \}$

Basic properties of sets

- Sets are inherently *unordered*:
 - No matter what objects a, b, and c denote,
 {a, b, c} = {a, c, b} = {b, a, c} =
 {b, c, a} = {c, a, b} = {c, b, a}.
- All elements are <u>distinct</u> (unequal); multiple listings make no difference!
 - $\{a, b, c\} = \{a, a, b, a, b, c, c, c, c\}.$
 - This set contains at most 3 elements!

Definition of Set Equality

- Two sets are declared to be equal *if and only if* they contain <u>exactly the same</u> elements.
- In particular, it does not matter *how the set is defined or denoted*.
- For example: The set {1, 2, 3, 4} =
 {x | x is an integer where x>0 and x<5} =
 {x | x is a positive integer whose square
 is >0 and <25}

Infinite Sets

- Conceptually, sets may be *infinite* (*i.e.*, not *finite*, without end, unending).
- Symbols for some special infinite sets:
 N = {0, 1, 2, ...} The natural numbers.
 Z = {..., -2, -1, 0, 1, 2, ...} The integers.
 R = The "real" numbers, such as 374.1828471929498181917281943125...
- Infinite sets come in different sizes!

Venn Diagrams

F

Even integers from 2-10

Odd integers from 1 to 9 Primes All Positive integers less than 10 Integers from 1 to 9

Basic Set Relations: Member of

x∈*S* ("*x* is in *S*") is the proposition that object *x* is an *∈lement* or *member* of set *S*.

 $-e.g. 3 \in \mathbb{N}$, "a" $\in \{x \mid x \text{ is a letter of the alphabet}\}$

- Can define <u>set equality</u> in terms of ∈ relation:
 ∀S,T: S=T ↔ (∀x: x∈S ↔ x∈T)
 "Two sets are equal **iff** they have all the same members."
- $x \notin S := \neg (x \in S)$ "*x* is not in *S*"

The Empty Set

• Ø ("null", "the empty set") is the unique set that contains no elements whatsoever.

•
$$\emptyset = \{\} = \{x | False\}$$

• No matter the domain of discourse, we have the axiom

 $\neg \exists x: x \in \emptyset.$

Subset and Superset Relations

- $S \subseteq T$ ("*S* is a subset of *T*") means that every element of *S* is also an element of *T*.
- $S \subseteq T \Leftrightarrow \forall x \ (x \in S \rightarrow x \in T)$
- $\emptyset \subseteq S, S \subseteq S$.
- $S \supseteq T$ ("*S* is a superset of *T*") means $T \subseteq S$.
- Note $S = T \Leftrightarrow S \subseteq T \land S \supseteq T$.
- $S \subseteq T$ means $\neg(S \subseteq T)$, *i.e.* $\exists x (x \in S \land x \notin T)$

Proper (Strict) Subsets & Supersets

• $S \subset T$ ("*S* is a proper subset of *T*") means that $S \subseteq T$ but $T \not\subseteq S$. Similar for $S \supset T$.

Sets Are Objects, Too!

• The objects that are elements of a set may *themselves* be sets.

IGN

in portant

- *E.g.* let $S = \{x \mid x \subseteq \{1,2,3\}\}$ then $S = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- Note that $1 \neq \{1\} \neq \{\{1\}\} !!!!!$

Cardinality and Finiteness

- |S| (read "the *cardinality* of S") is a measure of how many different elements S has.
- *E.g.*, $|\emptyset|=0$, $|\{1,2,3\}|=3$, $|\{a,b\}|=2$, $|\{\{1,2,3\},\{4,5\}\}|=2$.
- We say S is *infinite* if it is not *finite*.
- What are some infinite sets we've seen? **NZR**

The Power Set Operation

- The *power set* P(S) of a set S is the set of all subsets of S. P(S) = $\{x \mid x \subseteq S\}$.
- *E.g.* $P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$
- Sometimes P(S) is written 2^{S} . Note that for finite *S*, $|P(S)| = 2^{|S|}$.
- It turns out that |P(N)| > |N|.
 There are different sizes of infinite sets!

Ordered *n*-tuples

- For $n \in \mathbb{N}$, an ordered *n*-tuple or a <u>sequence</u> <u>of length n</u> is written $(a_1, a_2, ..., a_n)$. The first element is a_1 , etc.
- These are like sets, except that duplicates matter, and the order makes a difference.
- Note $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quin<u>tuples</u>, ..., *n*-tuples.

Cartesian Products of Sets

- For sets *A*, *B*, their *Cartesian product* $A \times B :\equiv \{(a, b) \mid a \in A \land b \in B \}.$
- *E.g.* $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$
- Note that for finite $A, B, |A \times B| = |A||B|$.
- Note that the Cartesian product is *not* commutative: $\neg \forall AB: A \times B = B \times A$.
- Extends to $A_1 \times A_2 \times \ldots \times A_n \ldots$

The Union Operator

- For sets A, B, their union A∪B is the set containing all elements that are either in A, or ("∨") in B (or, of course, in both).
- Formally, $\forall A, B: A \cup B = \{x \mid x \in A \lor x \in B\}$.
- Note that $A \cup B$ contains all the elements of *A* and it contains all the elements of *B*: $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$

Union Examples

- $\{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\}$
- $\{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}$

The Intersection Operator

- For sets A, B, their *intersection* $A \cap B$ is the set containing all elements that are simultaneously in A and (" \wedge ") in B.
- Formally, $\forall A, B: A \cap B \equiv \{x \mid x \in A \land x \in B\}$.
- Note that $A \cap B$ is a subset of A and it is a subset of B: subset of B: $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$

Intersection Examples

Disjointedness

- Two sets *A*, *B* are called *disjoint* (*i.e.*, unjoined) iff their intersection is empty. $(A \cap B = \emptyset)$
- Example: the set of even integers is disjoint with the set of odd integers.

Help, I've been disjointed!

Inclusion-Exclusion Principle

Set Difference

- For sets *A*, *B*, the *difference of A and B*, written *A*–*B*, is the set of all elements that are in *A* but not *B*.
- $A B := \{x \mid x \in A \land x \notin B\}$ = $\{x \mid \neg(x \in A \rightarrow x \in B)\}$
- Also called: The <u>complement of B with respect to A</u>.

Set Difference Examples

• {1,2,3,4,5,6} - {2,3,5,7,9,11} = ______{1,4,6}}

• $\mathbf{Z} - \mathbf{N} = \{\dots, -1, 0, 1, 2, \dots\} - \{0, 1, \dots\}$ = $\{x \mid x \text{ is an integer but not a nat. } \#\}$ = $\{x \mid x \text{ is a negative integer}\}$ = $\{\dots, -3, -2, -1\}$

Set Difference - Venn Diagram

• *A-B* is what's left after *B* "takes a bite out of *A*"

Chomp!

Set Complements

- The *universe of discourse* can itself be considered a set, call it *U*.
- The *complement* of *A*, written *A*, is the complement of *A* w.r.t. *U*, *i.e.*, it is *U*–*A*.
- *E.g.*, If *U*=**N**,

$$\{3,5\} = \{0,1,2,4,6,7,\dots\}$$

Set Identities

- Identity: $A \cup \emptyset = A \quad A \cap U = A$
- Domination: $A \cup U = U$ $A \cap \emptyset = \emptyset$
- Idempotent: $A \cup A = A = A \cap A$
- Double complement: $(\overline{A}) = A$
- Commutative: $A \cup B = B \cup A$ $A \cap B = B \cap A$
- Associative: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$

DeMorgan's Law for Sets

• Exactly analogous to (and derivable from) DeMorgan's Law for propositions.

 $A \cup B = A \cap B$ $A \cap B = A \cup B$

Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where *E*s are set expressions), here are three useful techniques:

- Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
- Use logical equivalences.
- Use a membership table.

Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - − Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$

Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use "1" to indicate membership in the derived set, "0" for non-membership.
- Prove equivalence with identical columns.

Membership Table Example

Prove $(A \cup B) - B = A - B$. $A \mid B \mid A \cup B \mid (A \cup B) - B \mid A - B$ 0 0 1 0 1 0 1

Membership Table Exercise

Prove $(A \cup B) - C = (A - C) \cup (B - C)$.

ABC	$A \cup B$	$(A \cup B) - C$	A-C	B-C	$(A-C)\cup(B-C)$
0 0 0					
0 0 1					
0 1 0					
0 1 1					
1 0 0					
1 0 1					
1 1 0					
1 1 1					

Generalized Union

- Binary union operator: $A \cup B$
- *n*-ary union: $A \cup A_2 \cup \ldots \cup A_n :\equiv ((\ldots((A_1 \cup A_2) \cup \ldots) \cup A_n)))$ (grouping & order is irrelevant)

 $A \in X$

• "Big U" notation: $\bigcup_{i=1}^{n} A_{i}$ • Or for infinite sets of sets: $\bigcup A$

Generalized Intersection

- Binary intersection operator: $A \cap B$
- *n*-ary intersection: $A \cap A_2 \cap \ldots \cap A_n \equiv ((\ldots((A_1 \cap A_2) \cap \ldots) \cap A_n)))$ (grouping & order is irrelevant)

i=1

 $A \in X$

- "Big Arch" notation: $\bigcap_{i=1}^{n} A_{i}$
- Or for infinite sets of sets: $\bigcap A$