CSIS 2226: Foundations of CS

Course Overview

CSIS 2226: Foundations of CS

A few things first:
 Hand out syllabus
 Brief introductions
 What's the course all about

Days / times / locations / etc

- Course meets:
 TR 12:30-2:20
 D003 on T; and D027 on R
 Office Hours (K-140):
 TR: 11am-12noon
 Will schedule alternate times if you need me to
 - □ Will schedule alternate times if you need me to

Communication outside of class

- If you need to contact me about the course outside of class time:
 - E-mail: log into Blackboard and use the e-mail there
 - □ Phone: 609-626-3526
- If you need to contact me about something other than this course
 - E-mail: cicirelv@stockton.edu

Course Objectives

- Gaining knowledge of applied discrete mathematics including the field's terminology and methods, and in particular in relationship to computer science
- Learning the fundamental principles and theories of discrete mathematics and how they apply to computer science and information systems
- Learning to apply topics of discrete mathematics to solving computer science problems

Pre-requisites

- MATH 2225 with a grade of C or better
- Exception to pre-req:
 - Students who have completed MATH 3325 are also fine

This is a 2nd course on Discrete Math

- CSIS 2226 is referred to by some informally as "Discrete 2"
- The course will cover:
 - □ A review of some topics from Discrete 1
 - □ Coverage of additional topics of Discrete Math
 - Emphasis placed on computer science applications

ISETL: Interactive Set Language

ISETL:

- A relatively small programming language
- Entire ISETL system can fit on (and run from) a floppy disk (if anyone still uses them)

"Interactive"

- □ ISETL is not a compiled language
- □ System interprets one statement at a time as you type them

"Set"

- □ "Set" as in the discrete math concept
- Fundamental type of data in ISETL is the Set

"Language"

□ Well.... in the programming sense

Prolog: Programming in Logic

Prolog:

- □ A mathematically-oriented programming language
- Considered by some as a "traditional A.I. language"
- Name means "programming in logic"
- A Prolog program consist of:
 - A set of facts and a set of rules encoded as Horn clauses in First Order Logic

□ We call this a knowledge-base

- Running a Prolog program consists of:
 - Posing a query statement (specified in first order logic)
 - Prolog then performs automated theorem proving using the knowledge-base to prove or disprove your query statement.

Required Textbook

- Discrete Mathematics and Its Applications (Rosen, 6th Edition)
- Other recent editions are probably O.K.
 - I have a listing that supposedly maps problem numbers, etc between recent editions
 - If you used an earlier edition in Discrete 1, don't buy a new book (assuming you still have it)
 - □ If you don't still have it, get the 6th edition

Thursdays in the lab D027

- On Thursdays, we'll meet in D027
- Bring an easily transportable storage device with you (e.g., a flash drive)
 - I recommend keeping a copy of ISETL and Prolog on it (once I tell you where to obtain it)
- In addition to ISETL and Prolog, I may introduce other useful tools of mathematics for CS in the lab

Blackboard (formerly known as WebCT)

I will be using Blackboard to: Communicate with you electronically Collect some homework assignments Provide you with useful items You can access it through the Go Portal You can also bypass the portal through: http://skimmer.stockton.edu

Grading

- Exam 1: 12%
- Exam 2: 12%
- Exam 3: 12%
- Problem Sets / Homework: 60%
- Participation: 4%

- 90 or better: A
- 80 or better: at least B
- 70 or better: at least C
- 60 or better: at least D
- 0 or better: at least F ;)
- "at least"
 - There are + and grades that I might use
 - There's also the possibility that I might adjust the grade boundaries to give you next higher letter

Exams

- Not cumulative
- Closed Book
- Allowed 1 sheet of notes
- Allowed (and recommended) a calculator

Note: No cell phones or other communications devices for calculator purposes

Homework / Problem Sets

- Largest part of your grade (60%)
- Most individual
- A few in small groups
- What?
 - Sets of problems (this is essentially a math course after all)
 - E.g., problems from the textbook
 - Other similar problems
 - Small bits of programming in ISETL or Prolog or some other system to be announced

Other computer exercises in other tools as assigned

Duedates and late policy

If due on paper (e.g., most problem sets)
 Will be due in class at the beginning of class

If due electronically

Will be due by midnight on day due via Blackboard

Late penalty:

- \Box 50% if less than one week late
- 0 if more than one week late
- □ Waived first time late if less than one week late

Makeup Exams and Incompletes

Makeup Exams:

□ There won't be any, except for:

- Documented medical excuses (provide doctor's note upon return
- Other appropriately documented institutional excuses
 - In most cases, this will require documentation before hand (e.g., if you play sports, you should know when your games on before they happen)

Incomplete Grades

Highly unlikely there will ever be one with my incomplete policy (see syllabus)

Schedule of Topics

- Last page of syllabus
 - □ Subject (and likely) to change
 - □ Just an approximation
- Will warn you a week or so ahead of time if Exam dates change

Course Topics

- Topic 1: (review topic)
 - A review of logic, sets, functions from Discrete 1 (parts of Chapters 1 and 2)
 - Mostly a review to prepare you for later topics
 - □ Will highlight CS applications as we review
- Topic 2: (new topic)
 - Combinatorial Optimization (not in book)
- Topic 3: (new topic)
 - Boolean algebra, logic gates, and circuits
 - □ Chapter 11 (we're obviously jumping around in the book

Course Topics

Topic 4: (new for most of you)

 Algorithms, Growth of Functions, and Complexity of Algorithms (Chapter 3)

- Topic 5: (mostly new, but part review)
 - □ Review of induction and recursion (chapter 4)
 - □ Recursive algorithms (chapter 4)
 - Program correctness (chapter 4)
- Topic 6: (new topic)
 Relations and closures (chapter 8)
 Application to database queries

Course Topics

Topic 7: (new topic)
 Graphs (chapter 9)
 Both theory and applications
 Topic 8: (new topic)
 Trees (chapter 10)
 Both theory and applications

Do you need the book with you?

- You will definitely need it for homework purposes
- Could be useful to have with you in class, but not requiring you to bring it with you
 - i.e., if we do any problems from the book in class, I'll have the details either projected or on paper