More on Strings &
Intro to Input/Output

Strings

« A string is a sequence of characters
« Strings are objects of the String class

 String constants:

‘ "Hello, World!" ‘

String variables:

‘ String message = "Hello, World!"; ‘

String length: |

int n = message.length(); ‘

Empty string: B

Concatenation

» Use the + operator:

String name = "Dave";
String message = "Hello, " + name;
/l message is "Hello, Dave"

« If one of the arguments of the + operator is
a string, the other is converted to a string

String a = "Agent";
int n=7;
String bond = a + n; // bond is Agent7

Concatenation in Print Statements

» Useful to reduce the number of
System.out.print instructions

System.out.print("The total is ");
System.out.printin(total);

Vversus

System.out.printin("The total is " + total);

Converting between Strings and
Numbers
» Convert to number:

String str = “12";
int n = Integer.parselnt(str);

String str2 = “52.5";
double x = Double.parseDouble(str2);

» Convert to string:

int n=5;

String str =™ +n;
str = Integer.toString(n);

Substrings

String greeting = "Hello, World!";
String sub = greeting.substring(0, 5); // sub is "H ello"

» Supply start and “past the end” position
* First position is at 0

A B W e (| R (i
01 2 3 4 5 6 7 8 9 10 11 12

Reading Input

» System.in has minimal set of features—it
can only read one byte at a time

* InJava 5.0, Scanner class was added to
read keyboard input in a convenient manner

e |Scanner in = new Scanner (Systemin);

Systemout.print("Enter quantity: ");
int quantity = in.nextlnt();

* nextDouble reads a double

» nextLine reads a line (until user hits Enter)

* nextWord reads a word (until any white
space)

File InputTester.java

File InputTester.java

18: System.out.print("Enter dollars: ");

19: int dollars = in.nextInt();

20: System.out.print (“"Enter quarters: ");

21: int quarters = in.nextInt();

22: System.out.print("Enter dimes: ")i

23: int dimes = in.nextInt();

24: System.out.print("Enter nickels: ");

25: int nickels = in.nextInt();

26: System.out.print("Enter pennies: ");

27: int pennies = in.nextint();

28: register.enterPayment(dollars, quarters, dimes,
nickels, pennies);

29:

30: System.out.print("Your changeis");

31: System.out.printin(register.giveChange());

32: }

33: }

01: import java.util. Scanner;

02:

03: /=

04: This class tests console input.

05: */

06: public class InputTester

07:

08: public static void main(String[] args)
09: {

10: Scanner in = new Scanner(System.in);
11:

12: CashRegister register = new CashRegister();
13:

14: System.out.print("Enter price: ");

15: double price = in.nextDouble();

16: register.recordPurchase(price);

17:

Output

Enter price: 7.55
Enter dollars: 10
Enter quarters: 2
Enter dines: 1
Enter nickels: 0
Enter pennies: 0
Your change is 3.05

Reading Input from a Dialog Box

? .Eme; price;

0K - Cancel

Figure 8:
An Input Dialog Box

Reading Input From a Dialog Box

° ‘ String input = JOptionPane.showlInputDialog(pronpt) ‘

» Convert strings to numbers if necessary:

int count = Integer.parselnt(input); ‘

» Conversion throws an exception if user
doesn't supply a number—see chapter 15
* Add System.exit(0) to the main

method of any program that uses
JOptionPane

Formatting Output

» Note: Be sure to look at “Advanced
Topic 4.4” and “Advanced Topic 4.6" in
book.

« Random Complaint about this Textbook:

— Lists among chapter goals a topic that it hides
within “advanced topic” sections.

— Should be a subsection of this chapter.

Formatting Output:
Escape Sequences

» Suppose you want the output:

Hello, “World”!

System.out.printin(“Hello, “World!);

won't work... any ideas why?

* Instead, you need:
— System.out.printin(“Hello, \"World\"!");
—\"is an escape sequence indicating the “

character

» The backslash \ within a string indicates a

sequence representing a special character

Formatting Output:
Escape Sequences

» The backslash \ within a string indicates a
sequence representing a special character

* \\ is the escape sequence if you really want a
\

— For example:

System.out.printin(“The file is located in C:\CSIS2101\\");
— Prints

The file is located in C:\CSIS2101\

Other common escape sequences

* New line: \n
System.out.print(“*\n**\n***\n");
* prints

*kk

Other common escape sequences

e Tab: \t
System.out.printin(“The following letters are tab separated:\ta\tb\tc”);

* prints
The following letters are tab separated: a b c

» Unicode characters: \u followed by its Unicode
encoding

— System.out.printin(“San Jos\uOOE9");
— prints San José.
— See Appendix B of book for Unicode encodings

International Alphabets

0 S N
:lQ WIE R lelull IolPlU]:- "I
o o o Y o Y e A e
S a3 G N Y
=1 [a] [TaeT=]

Figure 5:
A German Keyboard

International Alphabets

A[g]a[alalc] [ola@] [u
ninnlulafu[=g e]ola] [u
ald [sfulalda o3> el [T
old b s|ulm] [[@l] |9
ANAN T ¢ e 1
Aallmlg|alals] [1]2]&
#lnon|aa g |delo
MIEIRIRIEIE 1 e

Figure 6:
The Thai Alphabet

International Alphabets

CLASSIC SOUPS Sm. Lg.

* W W % 57, House Chicken Soup (Chicken, Celery,

Potato, Onion, Carrot) .
¥ f&x & 58. Chicken Rice Soup.... g
m = % 59. Chicken Noodle Soup $
A # % 60. Cantonese Wonton Soup 1.50 2.75
» % & 61. Tomato Clear Egg Drop Soup . 1.65 2.95
T 5 & 62. Regular Wonton Soup 1.10 2.10
B2 & % 63. & Hot & Sour Soup 10 2.10
F L & 64. Egg Drop Soup 2.10
F F & 65 Egg Drop Wonton Mix 2.10
% & X % 66. Tofu Vegetable Soup NA 3.50
¥ I K & 67. Chicken Corn Cream Soup 3.50
¥ A X A% 68. Crab Meat Corn Cream Sou 3.50
& % 3 69. Seafood SoUp.....cceeverieienne 3.50
Figure 7:

A Menu with Chinese Characters

Formatting Numbers: printf

» We've seen doubles printed with many
decimal places, e.g.,
—434.9999999994

» What if we want to print to a specified
number of decimal places or do other
formatting?

» We can accomplish this using
System.out.printf and formatting specifiers

System.out.printf

¢ Consider that we have:
double total = 3.50;
final double TAX_RATE = 8.5;
double tax = total * TAX_RATE / 100;
System.out.printin(“Total:\t” + total + “\nTax:\t" + tax);

¢ Prints:
Total: 35
Tax: 0.2975
« But we might want:
Total: 3.50
Tax: 0.30

System.out.printf

* We can accompiish this with:
System.out.printf(“Total:\t%5.2f\nTax:\t%5.2f", total, tax);
» 005.2f
— % indicates that what follows is a format specifier.
—5 is the desired width of the thing we’re printing.
» Width is the total number of characters to be printed
—This is followed by a . and then the precision, 2.

—The f ends this format specifier indicating that the
number should be formatted as a fixed floating
point number.

System.out.printf

« See tabies 3 and 4 on page 138 for other formaiting
specifiers and flags you can use.

« Instead of f, you can use e to print in scientific
notation

« Or with g, to print very large or very small numbers
in scientific notation, but others as fixed floating
points.

