
1

More on Strings &
Intro to Input/Output

Strings

• A string is a sequence of characters
• Strings are objects of the String class

• String constants:

• String variables:

• String length:

• Empty string:

"Hello, World!"

String message = "Hello, World!";

int n = message.length();

""

Concatenation

• Use the + operator:

• If one of the arguments of the + operator is
a string, the other is converted to a string

String name = "Dave";
String message = "Hello, " + name;

// message is "Hello, Dave"

String a = "Agent";
int n = 7;
String bond = a + n; // bond is Agent7

Concatenation in Print Statements

• Useful to reduce the number of
System.out.print instructions

versus

System.out.print("The total is ");
System.out.println(total);

System.out.println("The total is " + total);

Converting between Strings and
Numbers

• Convert to number:

• Convert to string:

String str = “12”;
int n = Integer.parseInt(str);

String str2 = “52.5”;
double x = Double.parseDouble(str2);

int n = 5;

String str = "" + n;
str = Integer.toString(n);

Substrings

•

• Supply start and “past the end” position
• First position is at 0

String greeting = "Hello, World!";
String sub = greeting.substring(0, 5); // sub is "H ello"

2

Reading Input
• System.in has minimal set of features–it

can only read one byte at a time
• In Java 5.0, Scanner class was added to

read keyboard input in a convenient manner
•

• nextDouble reads a double
• nextLine reads a line (until user hits Enter)
• nextWord reads a word (until any white

space)

Scanner in = new Scanner(System.in);
System.out.print("Enter quantity: ");
int quantity = in.nextInt();

File InputTester.java
01: import java.util.Scanner;
02:
03: /**
04: This class tests console input.
05: */
06: public class InputTester
07: {
08: public static void main(String[] args)
09: {
10: Scanner in = new Scanner(System.in);
11:
12: CashRegister register = new CashRegister();
13:
14: System.out.print("Enter price: ");
15: double price = in.nextDouble();
16: register.recordPurchase(price);
17:

File InputTester.java

18: System.out.print("Enter dollars: ");
19: int dollars = in.nextInt();
20: System.out.print ("Enter quarters: ");
21: int quarters = in.nextInt();
22: System.out.print("Enter dimes: ");
23: int dimes = in.nextInt();
24: System.out.print("Enter nickels: ");
25: int nickels = in.nextInt();
26: System.out.print("Enter pennies: ");
27: int pennies = in.nextInt();
28: register.enterPayment(dollars, quarters, dimes,

nickels, pennies);
29:
30: System.out.print("Your change is ");
31: System.out.println(register.giveChange());
32: }
33: }

File InputTester.java

Enter price: 7.55
Enter dollars: 10
Enter quarters: 2
Enter dimes: 1
Enter nickels: 0
Enter pennies: 0
Your change is 3.05

Output

Reading Input from a Dialog Box

Figure 8:
An Input Dialog Box

Reading Input From a Dialog Box

•

• Convert strings to numbers if necessary:

• Conversion throws an exception if user
doesn't supply a number–see chapter 15

• Add System.exit(0) to the main
method of any program that uses
JOptionPane

String input = JOptionPane.showInputDialog(prompt)

int count = Integer.parseInt(input);

3

Formatting Output

• Note: Be sure to look at “Advanced
Topic 4.4” and “Advanced Topic 4.6” in
book.

• Random Complaint about this Textbook:
– Lists among chapter goals a topic that it hides

within “advanced topic” sections.
– Should be a subsection of this chapter.

Formatting Output:
Escape Sequences

• Suppose you want the output:
Hello, “World”!

• System.out.println(“Hello, “World”!”);
won’t work… any ideas why?

• Instead, you need:
– System.out.println(“Hello, \”World\”!”);
– \” is an escape sequence indicating the “

character

• The backslash \ within a string indicates a
sequence representing a special character

Formatting Output:
Escape Sequences

• The backslash \ within a string indicates a
sequence representing a special character

• \\ is the escape sequence if you really want a
\
– For example:

System.out.println(“The file is located in C:\\CSIS2101\\”);

– Prints
The file is located in C:\CSIS2101\

Other common escape sequences

• New line: \n
System.out.print(“*\n**\n***\n”);

• prints
*
**

Other common escape sequences

• Tab: \t
System.out.println(“The following letters are tab separated:\ta\tb\tc”);

• prints
The following letters are tab separated: a b c

• Unicode characters: \u followed by its Unicode
encoding
– System.out.println(“San Jos\u00E9”);
– prints San José.
– See Appendix B of book for Unicode encodings

International Alphabets

Figure 5:
A German Keyboard

4

International Alphabets

Figure 6:
The Thai Alphabet

International Alphabets

Figure 7:
A Menu with Chinese Characters

Formatting Numbers: printf

• We’ve seen doubles printed with many
decimal places, e.g.,
– 434.9999999994

• What if we want to print to a specified
number of decimal places or do other
formatting?

• We can accomplish this using
System.out.printf and formatting specifiers

System.out.printf

• Consider that we have:
double total = 3.50;
final double TAX_RATE = 8.5;
double tax = total * TAX_RATE / 100;
System.out.println(“Total:\t” + total + “\nTax:\t” + tax);

• Prints:
Total: 3.5
Tax: 0.2975

• But we might want:
Total: 3.50
Tax: 0.30

System.out.printf

• We can accomplish this with:
System.out.printf(“Total:\t%5.2f\nTax:\t%5.2f”, total, tax);

• %5.2f
– % indicates that what follows is a format specifier.
– 5 is the desired width of the thing we’re printing.

• Width is the total number of characters to be printed

– This is followed by a . and then the precision, 2.
– The f ends this format specifier indicating that the

number should be formatted as a fixed floating
point number.

System.out.printf
• See tables 3 and 4 on page 138 for other formatting

specifiers and flags you can use.
• Instead of f, you can use e to print in scientific

notation
• Or with g, to print very large or very small numbers

in scientific notation, but others as fixed floating
points.

