
1

Decisions

The if Statement

• The if statement lets a program carry out
different actions depending on a condition

if (amount <= balance)
balance = balance - amount;

The if Statement

Figure 1:
Flowchart for an if statement

The if/else Statement

if (amount <= balance)
balance = balance - amount;

else
balance = balance - OVERDRAFT_PENALTY;

The if/else Statement

Figure 2:
Flowchart for an
if/else
statement

Statement Types

• Simple statement

• Compound statement

Also while, for, etc. (loop statements–
Chapter 7)

balance = balance - amount;

if (balance >= amount) balance = balance - amount;

2

Statement Types

• Block statement

{
double newBalance = balance - amount;
balance = newBalance;

}

Syntax 6.1: The if Statement
if(condition)

statement

if (condition)
statement1

else
statement2

Example:
if (amount <= balance)

balance = balance - amount;

if (amount <= balance)
balance = balance - amount;

else
balance = balance - OVERDRAFT_PENALTY;

Purpose:
To execute a statement when a condition is true or false

Syntax 6.2: Block Statement

{
statement1
statement2
. . .

}

Example:
{

double newBalance = balance - amount;
balance = newBalance;

}

Purpose:
To group several statements together to form a sing le statement

Self-Check

1. Why did we use the condition amount <=
balance and not amount < balance in the
example for the if/else statement?

2. What is logically wrong with the statement

and how do you fix it?

if (amount <= balance)
newBalance = balance - amount; balance = newBalance;

Answers

1. If the withdrawal amount equals the
balance, the result should be a zero balance
and no penalty

2. Only the first assignment statement is part
of the if statement. Use braces to group
both assignment statements into a block
statement

Comparing Values:
Relational Operators

• Relational operators compare values

• The == denotes equality testing

Not equal≠!=

Equal===

Less than or equal≤<=

Less than<<

Greater than or equal≥>=

Greater than>>

DescriptionMath NotationJava

a = 5; // Assign 5 to a
if (a == 5) . . . // Test whether a equals 5

3

Comparing Floating-Point Numbers

• Consider this code:

• It prints:

double r = Math.sqrt(2);
double d = r * r - 2;
if (d == 0)

System.out.println("sqrt(2)squared minus 2 is 0");
else

System.out.println("sqrt(2)squared minus 2 is not 0 but " + d);

sqrt(2)squared minus 2 is not 0 but 4.4408920985006 26E-16

Comparing Floating-Point Numbers

• To avoid roundoff errors, don't use == to
compare floating-point numbers

• To compare floating-point numbers test
whether they are close enough : |x - y| ≤ εε is a small number such as 10 -14

final double EPSILON = 1E-14;
if (Math.abs(x - y) <= EPSILON)

// x is approximately equal to y

Comparing Strings

• Don't use == for strings!

• Use equals method:

== tests identity, equals tests equal contents

• Case insensitive test ("Y" or "y")

if (input == "Y") // WRONG!!!

if (input.equals("Y"))

if (input.equalsIgnoreCase("Y"))
Continued…

Comparing Strings

• s.compareTo(t) < 0 means
s comes before t in the dictionary

• "car" comes before "cargo"

• All uppercase letters come before lowercase:
"Hello" comes before "car"

Lexicographic Comparison

Figure 3:
Lexicographic Comparison

Comparing Objects

• == tests for identity, equals for identical
content

•

• box1 != box3,
but box1.equals(box3)

• box1 == box2

• Caveat: equals must be defined for the class

Rectangle box1 = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box1;
Rectangle box3 = new Rectangle(5, 10, 20, 30);

4

Object Comparison

Figure 4:
Comparing Object
References

Testing for null

• null reference refers to no object

• Can be used in tests:

String middleInitial = null; // Not set
if (. . .)

middleInitial = middleName.substring(0, 1);

if (middleInitial == null)
System.out.println(firstName + " " + lastName);

else
System.out.println(firstName + " " + middleInitial + ". "

+ lastName);

Testing for null

• Use ==, not equals, to test for null

• null is not the same as the empty string ""

Self Check

3. What is the value of s.length() if s is
1. the empty string ""?
2. the string " " containing a space?
3. null ?

Answers

3. (a) 0; (b) 1; (c) an exception is thrown

Self-Check

String a = "1";
String b = "one";
double x = 1;
double y = 3 * (1.0 / 3);

1. a == "1"
2. a == null
3. a.equals("")
4. a == b
5. a == x
6. x == y
7. x - y == null
8. x.equals(y)

4. Which of the following comparisons are
syntactically incorrect? Which of them are
syntactically correct, but logically
questionable?

5

Answers

3. (a) 0; (b) 1; (c) an exception is thrown

4. Syntactically incorrect: 5, 7, 8. Logically
questionable: 1, 4, 6

Multiple Alternatives:
Sequences of Comparisons

•

• The first matching condition is executed

• Order matters

if (condition1)
statement1;

else if (condition2)
statement2;

. . .
else

statement4;

if (richter >= 0) // always passes
r = "Generally not felt by people";

else if (richter >= 3.5) // not tested
r = "Felt by many people, no destruction”;

. . .

Multiple Alternatives:
Sequences of Comparisons

• Don't omit else

if (richter >= 8.0)
r = "Most structures fall";

if (richter >= 7.0) // omitted else--ERROR
r = "Many buildings destroyed”;

File Earthquake.java
01: /**
02: A class that describes the effects of an earthquake .
03: */
04: public class Earthquake
05: {
06: /**
07: Constructs an Earthquake object.
08: @param magnitude the magnitude on the Richter scale
09: */
10: public Earthquake(double magnitude)
11: {
12: richter = magnitude;
13: }
14:
15: /**
16: Gets a description of the effect of the earthquake.
17: @return the description of the effect
18: */ Continued…

File Earthquake.java
19: public String getDescription()
20: {
21: String r;
22: if (richter >= 8.0)
23: r = "Most structures fall" ;
24: else if (richter >= 7.0)
25: r = "Many buildings destroyed" ;
26: else if (richter >= 6.0)
27: r = "Many buildings considerably damaged, some

collapse" ;
28: else if (richter >= 4.5)
29: r = "Damage to poorly constructed buildings" ;
30: else if (richter >= 3.5)
31: r = "Felt by many people, no destruction" ;
32: else if (richter >= 0)
33: r = "Generally not felt by people";
34: else
35: r = "Negative numbers are not valid" ;
36: return r;
37: }

Continued…

File Earthquake.java

38:
39: private double richter;
40: }

6

File EarthquakeTester.java

01: import java.util.Scanner;
02:
03: /**
04: A class to test the Earthquake class.
05: */
06: public class EarthquakeTester
07: {
08: public static void main(String[] args)
09: {
10: Scanner in = new Scanner(System.in);
11:
12: System.out.print("Enter a magnitude on the Richter

scale: ");
13: double magnitude = in.nextDouble();
14: Earthquake quake = new Earthquake(magnitude);
15: System.out.println(quake.getDescription());
16: }
17: }

Multiple Alternatives: Nested
Branches

• Branch inside another branch

if (condition1)
{

if (condition1a)
statement1a;

else
statement1b;

}
else

statement2;

Tax Schedule (Updated for 2006 rates)

28%Amount over $123,700, up
to $188,450

28%Amount over $74,200, up to
$154,800

33%Amount over $188,450, up
to $336,550

33%Amount over $154,800, up
to $336,550

10%$0 … $15,10010%$0 … $7,550

If your filing status is marriedIf your filing status is single

35%Amount over $336,55035%Amount over $336,550

25%Amount over $61,300, up
to $123,700

25%Amount over $30,650, up to
$74,200

15%Amount over $15,100, up
to $61,300

15%Amount over $7,550, up to
$30,650

PercentageTax BracketPercentageTax Bracket

Nested Branches

• Compute taxes due, given filing status and
income figure: (1) branch on the filing status,
(2) for each filing status, branch on income
level

• The two-level decision process is reflected in
two levels of if statements

• We say that the income test is nested inside
the test for filing status

Continued…

Nested Branches

Figure 5:
Income Tax Computation Using 1992 Schedule

File TaxReturn.java

01: /**
02: A tax return of a taxpayer in 1992.
03: */
04: public class TaxReturn
05: {
06: /**
07: Constructs a TaxReturn object for a given income and
08: marital status.
09: @param anIncome the taxpayer income
10: @param aStatus either SINGLE or MARRIED
11: */
12: public TaxReturn(double anIncome, int aStatus)
13: {
14: income = anIncome;
15: status = aStatus;
16: }
17: Continued…

Note: This example is not up to date for 2005 rates … old example.

7

File TaxReturn.java
18: public double getTax()
19: {
20: double tax = 0;
21:
22: if (status == SINGLE)
23: {
24: if (income <= SINGLE_BRACKET1)
25: tax = RATE1 * income;
26: else if (income <= SINGLE_BRACKET2)
27: tax = RATE1 * SINGLE_BRACKET1
28: + RATE2 * (income - SINGLE_BRACKET1);
29: else
30: tax = RATE1 * SINGLE_BRACKET1
31: + RATE2 * (SINGLE_BRACKET2 – SINGLE_BRACKET1)
32: + RATE3 * (income - SINGLE_BRACKET2);
33: }

Continued…

File TaxReturn.java
34: else
35: {
36: if (income <= MARRIED_BRACKET1)
37: tax = RATE1 * income;
38: else if (income <= MARRIED_BRACKET2)
39: tax = RATE1 * MARRIED_BRACKET1
40: + RATE2 * (income - MARRIED_BRACKET1);
41: else
42: tax = RATE1 * MARRIED_BRACKET1
43: + RATE2 * (MARRIED_BRACKET2 - MARRIED_BRACKET1)
44: + RATE3 * (income - MARRIED_BRACKET2);
45: }
46:
47: return tax;
48: }
49:
50: public static final int SINGLE = 1;
51: public static final int MARRIED = 2;
52: Continued…

File TaxReturn.java

53: private static final double RATE1 = 0.15 ;
54: private static final double RATE2 = 0.28 ;
55: private static final double RATE3 = 0.31 ;
56:
57: private static final double SINGLE_BRACKET1 = 21450 ;
58: private static final double SINGLE_BRACKET2 = 51900 ;
59:
60: private static final double MARRIED_BRACKET1 = 35800 ;
61: private static final double MARRIED_BRACKET2 = 86500 ;
62:
63: private double income;
64: private int status;
65: }

File TaxReturnTester.java
01: import java.util.Scanner;
02:
03: /**
04: A class to test the TaxReturn class.
05: */
06: public class TaxReturnTester
07: {
08: public static void main(String[] args)
09: {
10: Scanner in = new Scanner(System.in);
11:
12: System.out.print("Please enter your income: ");
13: double income = in.nextDouble();
14:
15: System.out.print("Please enter S (single) or M

(married): ");
16: String input = in.next();
17: int status = 0; 18:

File TaxReturnTester.java
19: if (input.equalsIgnoreCase("S"))
20: status = TaxReturn.SINGLE;
21: else if (input.equalsIgnoreCase("M"))
22: status = TaxReturn.MARRIED;
23: else
24: {
25: System.out.println("Bad input.");
26: return ;
27: }
28:
29: TaxReturn aTaxReturn = new TaxReturn(income, status);
30:
31: System.out.println("The tax is "
32: + aTaxReturn.getTax());
33: }
34: }

File TaxReturnTester.java

Please enter your income: 50000
Please enter S (single) or M (married): S
The tax is 11211.5

Output

8

Using Boolean Expressions:
The boolean Type

• George Boole (1815-1864): pioneer in the study of
logic

• value of expression amount < 1000 is true or
false.

• boolean type: one of these 2 truth values

Using Boolean Expressions:
The boolean Type

Using Boolean Expressions:
Predicate Method

• A predicate method returns a boolean value

• Use in conditions

public boolean isOverdrawn()
{

return balance < 0;
}

if (harrysChecking.isOverdrawn()) . . .

Continued…

Using Boolean Expressions:
Predicate Method

• Useful predicate methods in Character
class:

•

• Useful predicate methods in Scanner class:
hasNextInt() and hasNextDouble()

isDigit
isLetter
isUpperCase
isLowerCase

if (Character.isUpperCase(ch)) . . .

if (in.hasNextInt()) n = in.nextInt();

Using Boolean Expressions:
The Boolean Operators

• && and

• || or

• ! Not

•

•

•

if (0 < amount && amount < 1000) . . .

if (input.equals(“M") || input.equals(“S")) . . .

if (!input.equals(“M")) . . .

&& and || Operators

Figure 6:
Flowcharts for && and || Combinations

9

Truth Tables

FalseFalseFalse
TrueTrueFalse
TrueAnyTrue

A||BBA

FalseAnyFalse
FalseFalseTrue
TrueTrueTrue

A&&BBA

TrueFalse
FalseTrue

!AA

Using Boolean Variables

•

• Set to truth value:

• Use in conditions:

married = input.equals("M");

private boolean married;

if (married) . . . else . . .
if (!married) . . .

Using Boolean Variables

• Also called flag

• It is considered unpolished to write a test
such as

Just use the simpler test

if (married == true) . . . // Don't

if (married) . . .

