The i f Statement

e Theif statement lets a program carry out
different actions depending on a condition

Decisions

unt <= balance)

balance = balance -

The i f Statement The i f/ el se Statement

if (amount <= balance)
balance = balance - amount;

amount < False else
balance? balance = balance - OVERDRAFT_PENALTY;

True

balance =
balance - amount

Figure 1:
Flowchart foran i f statement

The i f/ el se Statement Statement Types

¢ Simple statement

iia 3 balance = balance - amount;

balance?
« Compound statement
if (balance >= amount) balance = balance - amount;
balance = balance = balance -
balance - anding CNERDRAFTRENALTY Also whi | e, f or, etc. (loop statements—

Figure 2: Chapter 7)

Flowchart for an

iflelse

statement

Statement Types

¢ Block statement

doubl e newBal ance = bal ance - anpunt;

bal ance = newBal ance;

Syntax 6.1: The if Statement

Syntax 6.2: Block Statement

i f(condition)
stat enent

if (condition)
statenment 1
el se
st at enent 2

if (amount <= bal ance)

bal ance = bal ance - anount;

if (ampbunt <= bal ance)
bal ance = bal ance - anount;
el se
bal ance = bal ance - OVERDRAFT_PENALTY;

To execute a statement when a condition is true or false

{
statement ;
stat ement ,

doubl e newBal ance = bal ance - anount;
bal ance = newBal ance;

}

To group several statements together to form a sing le statement

Self-Check

1. Why did we use the condition anpunt <=
bal ance and not anpbunt < bal ance in the
example for the if/ el se statement?

2. What is logically wrong with the statement

if (amount <= balance)

newBalance = balance - amount; balance = newBalance;

and how do you fix it?

Answers

1. If the withdrawal amount equals the
balance, the result should be a zero balance
and no penalty

2. Only the first assignment statement is part
of the i f statement. Use braces to group
both assignment statements into a block
statement

Comparing Values:
Relational Operators

« Relational operators compare values

Java Math Notation Description

Greater than

Greater than or equal

Less than

Less than or equal

Equal

A
Wl [IAfA vV

Not equal

* The == denotes equality testing

; Il Assign 5 to a

=5) .../l Test whether a equals 5

Comparing Floating-Point Numbers

* Consider this code:

double r = Math.sqrt(2);
doubled =r*r- 2;
if (d == 0)

System.out.printin("sqrt(2)squared minus 2 is 0");
else
System.out.printin("sqgrt(2)squared minus 2 is not 0 but " + d);

* |t prints:

sqrt(2)squared minus 2 is not 0 but 4.4408920985006

Comparing Floating-Point Numbers

To avoid roundoff errors, don't use == to
compare floating-point numbers

To compare floating-point numbers test
whether they are close enough : |x -y| <€

final double EPSIL
if (Math.abs(x - vy,

I x is approxim

€ is a small number such as 10 14

Comparing Strings

¢ Don'tuse == for strings!

if (input == "Y") // WRONG!!!

« Use equals method:

if (input.equals("Y"))

== t est s identity, equals tests equal contents

« Case insensitive test ("Y" or "y")

if (input.equalsignoreCase("Y"))

Comparing Strings

Continued..

s.compareTo(t) < 0 means
s comes before t in the dictionary

"car" comes before "cargo"

All uppercase letters come before lowercase:
"Hello" comes before "car"

Lexicographic Comparison

Comparing Objects

€ argo

¢ a |k h old a

L. — _.'_V_J

Letters r comes
match before t

Figure 3:

Lexicographic Comparison

== tests for identity, equal s for identical
content

Rectangle box1 = new Rectangle(5, 10, 20, 30);

Rectangle box2 = box1;
Rectangle box3 = new Rectangle(5, 10, 20, 30);

box1l != box3,
but box1. equal s(box3)

box1l == box2

Caveat: equal s must be defined for the class

Object Comparison

Testing for nul |

box2 = J

X =
y =
width =
height =

=
y =
Figure 4: width =
Comparing Object height =
References

boxi = - Rectangle

10
20

BaicEs — Rectangle

5
10
20

* nul | reference refers to no object

String middlelnitial = null; // Not set
if(...)

middlelnitial = middleName.substring(0, 1);

¢ Can be used in tests:

if (middleInitial == null)
System.out.printin(firstName +" " + lastName);
else

System.out.printin(firstName + " + middlelnitial +

+ lastName);

Testing for nul |

¢ Use ==, not equal s, to test for nul |

¢ nul | isnotthe same as the empty string

Self Check

3. Whatis the value of s.length() ifsis
1. the empty string "*?
2. the string " " containing a space?
3. null ?

Answers

3. (a) 0; (b) 1; (c) an exception is thrown

Self-Check

4. Which of the following comparisons are
syntactically incorrect? Which of them are
syntactically correct, but logically

questionable? -
String
doubl e
doubl e

ne";
i
3% (1.0/ 3);

< xXoTo

-y == null
equal s(y)

1.
2.
3.
4.
5.
6.
7.
8.

XXXpppoo

Answers

3. (a) 0; (b) 1; (c) an exception is thrown

4. Syntactically incorrect: 5, 7, 8. Logically
questionable: 1, 4, 6

Multiple Alternatives:
Sequences of Comparisons

Multiple Alternatives:
Sequences of Comparisons

LA if (conditionl)
st at enent 1;
else if (condi ti on2)

st at enent 2;
else
st at enent 4;

¢ The first matching condition is executed
* Order matters

if (richter >= 0) // always passes
‘Generally not felt by people”;
chter >= 3.5) // not tested
"Felt by many people, no destruction”;

File Eart hquake. j ava

¢ Don'tomit el se

if (richter >=8.0)
r = "Most structures fall";

if (richter >=7.0) // omitted else--ERROR
r = "Many buildings destroyed”;

A class that describes the effects of an earthquake

Earthquake

Constructs an Earthquake object.

@param magnitude the magnitude on the Richter scale

Earthquake(magnitude)

richter = magnitude;

Gets a description of the effect of the earthquake.
@return the description of the effec

Continued..

File Eart hquake. j ava

String getDescription()

String r;

OB WNP OO

"Many buildings destroyed"
(richter >=
"Many buildings

NRNNNNNNNE

~N o

nsiderably damaged, some

©

(richter >=)

"Damage to poorly constructed buildings"
(richter >=)

T by many people, no destruction”

2
2
3
3
8

w

"Generally not felt by people"

w

ONDWON R O

"Negative numbers are not valid"

W W w
~

Continued..

File Eart hquake. j ava

richter;

File Eart hquakeTester. | ava

import java.util. Scanner;

I

A class to test the Earthquake class.

EarthquakeTester

Scanner in =

System.out.print(
scale: "
magnitude = in.nextDouble();

main(String[] args)

Scanner(System.in);

"Enter

)i

Earthquake quake =
System.out.printin(quake.getDescription());

a magnitude on the Richter

Earthquake(magnitude);

Multiple Alternatives: Nes
Branches

ted

¢ Branch inside another branch

if (conditionl)

if (conditionla)
st at enent 1
else
st at enent 1b;

}

else
st at enent 2;

Tax Schedule (Updated for 2006 rates)

Nested Branches

If your filing status is single

If your filing status is married

¢ Compute taxes due, given filing

status and

income figure: (1) branch on the filing status,

(2) for each filing status, branch
level

on income

* The two-level decision process is reflected in

two levels of i f statements

* We say that the income test is
the test for filing status

nested inside

Continued..

File TaxRet urn. j ava

Tax Bracket Percentage | Tax Bracket Percentage
$0 ... $7,550 10% $0 ... $15,100 10%
Amount over $7,550, upto | 15% Amount over $15,100, up | 15%
$30,650 to $61,300
Amount over $30,650, up to | 25% Amount over $61,300, up | 25%
$74,200 to $123,700
Amount over $74,200, up to | 28% Amount over $123,700, up | 28%
$154,800 to $188,450
Amount over $154,800, up 33% Amount over $188,450, up | 33%
to $336,550 to $336,550
Amount over $336,550 35% Amount over $336,550 35%
True Single? False
income True 15% income True 15%
<21,450 bracker 35,800 bracket
False False
income True 28% income True 28%
<51,900 bracket <86,500 bracket
False False
31% 31%
bracket bracket

Figure 5:

Income Tax Computation Using 1992 Schedule

Note: This example is not up to date for 2005 rates

A tax return of a taxpayer in 1992

TaxReturn

oo

ayer income

TaxReturn(anincome,

income = anincome;
status = aStat

8:
el
0:
il
2:
S
4:
5
6:

PRRERRERRE

~

... old example.

aram aStatus either SINGLE or MARRIED

aStatus)

Continued..

File TaxRet urn. j ava

getTax()

tax= 0;

(status == SINGLE)

(income <= SINGLE_BRACKET1)
tax = RATEL * income;
(income <= SINGLE_BRACKET2)
tax = RATEL * SINGLE_BRACKET1
+ RATE2 * (income - SINGLE_BRACKET1);

tax = RATE1 * SINGLE_BRACKET1

+ RATE2 * (SINGLE_BRACKET2 — SINGLE_BRACKET1)
+ RATE3 * (income - SINGLE_BRACKET2);

File TaxRet urn. j ava

(income <= MARRIED_BRACKET1)
tax = RATEL * income;
(income <= MARRIED_BRACKET2)
tax = RATE1 * MARRIED_BRACKET1
+ RATE2 * (income - MARRIED_BRACKET1);

tax = RATE1 * MARRIED_BRACKET1
+ RATE2 * (MARRIED_BRACKET2 - MARRIED_BRACKET1)
+ RATE3 * (income - MARRIED_BRACKET?2);

SINGLE =
MARRIED = 2;
Continued..

File TaxRet urn. j ava

oo g
a s w®

RATE3 =

N o

SINGLE_BRACKET1 =
SINGLE_BRACKET2

o oo a
©

o
ORWNPF OO

MARRIED_BRACKET1
MARRIED_BRACKET2

o=

income;
stat

o oo

File TaxRet urnTester.j ava

import java.util. Scanner;

Jrx
A class to test the TaxReturn class.

TaxReturnTester
main(String[] args)
Scanner in = new Scanner(System.in);

System.out.print("Please enter your income: "
income = in.nextDouble();

System.out.print("Please enter S (single) or M
(married): ");

File TaxRet urnTester.j ava

(input.equalsignoreCase(

status = TaxReturn.SINGLE;
(input.equalsignoreCase("M"))

status = TaxReturn.MARRIED;

System.out.printin("Bad input.");

}

TaxReturn aTaxReturn =

TaxReturn(income, status);

System.out.printin("The taxis"
+ aTaxReturn.getTax()

File TaxRet ur nTester.j ava

Output

Please enter your income: 50000

Please enter S (single) or M (married):
The tax is 11211.5

Using Boolean Expressions:
The bool ean Type

Using Boolean Expressions:
The bool ean Type

» George Boole (1815-1864): pioneer in the study of
logic

 value of expression anmpunt < 1000istrue or
fal se.

* bool ean type: one of these 2 truth values

Iérooue ORDER LUNCH l

TN A
/;Jom ¥ES, m,;‘(\eﬂ

—/ Ys:,No,quqvu..J

Using Boolean Expressions:
Predicate Method

Using Boolean Expressions:
Predicate Method

« A predicate method returnsa bool ean value
public boolean isOverdrawn()

{

return balance < 0;

}

* Use in conditions

if (harrysChecking.isOverdrawn()) . . .

¢ Useful predicate methods in Char act er
ClaSS: isDigit
isLetter
isUpperCase
isLowerCase

LAl if (Character.isUpperCase(ch)) . . .

« Useful predicate methods in Scanner class:
hasNext I nt () and hasNext Doubl e()

if (in.hasNextInt()) n = in.nextInt();

Using Boolean Expressions:
The Boolean Operators

&& and | | Operators

¢ && and
e || or
« | Not

. if (0 < amount && amount < 1000) . . .

. if (input.equals(“M") || input.equals(“S")) . . .

if (linput.equals(‘M") . . .

False

amount < 100
True

“and” condition “or” condition
fulfilled fulfilled

input input
0<amount equals "S" equals "M"
True Thise True

Figure 6:
Flowcharts for &&and | | Combinations

Truth Tables

Using Boolean Variables

A B A&&B
True True True
True False False
False Any False
A B Al | B
True Any True
False True True
False False False
A 1A

True False
False True

LAl private boolean married;

¢ Set to truth value:

married = input.equals("M");

¢ Use in conditions:

if (married) . . . else . ..

if ('married) . . .

Using Boolean Variables

e Also called flag

« |tis considered unpolished to write a test

such as

if (married == true) . . . // Don't

Just use the simpler test

if (married) . . .

