
1

Java’s Number Types

Number Types

• int: integers, no fractional part

• double: floating-point numbers (double 
precision)

1, -4, 0 

0.5, -3.11111, 4.3E24, 1E-14

Number Types

• A numeric computation overflows if the 
result falls outside the range for the 
number type

• Java: 8 primitive types, including four 
integer types and two floating point types 

int n = 1000000;
System.out.println(n * n); // prints -727379968

Primitive Types

SizeDescriptionType
4 bytesThe integer type, with range

–2,147,483,648 . . . 2,147,483,647 
int

1 byteThe type describing a single byte, with range 
–128 . . . 127 

byte

2 bytesThe short integer type, with range 
–32768 . . . 32767 

short

8 bytesThe long integer type, with range –
9,223,372,036,854,775,808 . . . 

–9,223,372,036,854,775,807

long

Primitive Types

SizeDescriptionType
8 bytesThe double-precision floating-point type, with 

a range of about ±10308 and about 15 

significant decimal digits

double

1 byteThe type with the two truth values false and 
true 

boolean

2 bytesThe character type, representing code units 
in the Unicode encoding scheme

char

4 bytesThe single-precision floating-point type, with 
a range of about ±1038 and about 7 significant 
decimal digits 

float

Number Types: Floating-point 
Types

• Rounding errors occur when an exact 
conversion between numbers is not possible

• Java: Illegal to assign a floating-point 
expression to an integer variable

double f = 4.35;
System.out.println(100 * f); // prints 434.99999999999994 

double balance = 13.75; 
int dollars = balance; // Error 



2

Number Types: Floating-point 
Types

• Casts: used to convert a value to a different 
type

Cast discards fractional part. 
• Math.round converts a floating-point 

number to nearest integer

int dollars = (int) balance; // OK

long rounded = Math.round(balance); // if balance is 13.75, then
// rounded is set to 14

Syntax 4.1: Cast

(typeName) expression

Example:
(int) (balance * 100)

Purpose:
To convert an expression to a different type

Constants: final
• A final variable is a constant 

• Once its value has been set, it cannot be 
changed 

• Named constants make programs easier 
to read and maintain 

• Convention: use all-uppercase names for 
constants

final double QUARTER_VALUE = 0.25;
final double DIME_VALUE = 0.1;
final double NICKEL_VALUE = 0.05;
final double PENNY_VALUE = 0.01;
payment = dollars + quarters * QUARTER_VALUE + dimes * DIME_VALUE

+ nickels * NICKEL_VALUE + pennies * PENNY_VALUE;

Constants: static final
• If constant values are needed in several methods, 

declare them together with the instance fields of a 
class and tag them as static and final 

• Give static final constants public access to 
enable other classes to use them

public class Math
{

. . .
public static final double E = 2.7182818284590452354;
public static final double PI = 3.14159265358979323846;

}

double circumference = Math.PI * diameter; 

Syntax 4.2: Constant Definition

In a method: 
final typeName variableName = expression ;

In a class: 
accessSpecifier static final typeName variableName = expression;

Example:
final double NICKEL_VALUE = 0.05; 
public static final double LITERS_PER_GALLON = 3.785;

Purpose:
To define a constant in a method or a class 


