
Arrays

Arrays • When array is created, all values are initialized depending on array type: - Numbers: 0 - Boolean: false - Object References: null

Arrays

 Accessing a nonexistent element results in a bounds error

```
double[] data = new double[10];
data[10] = 29.95; // ERROR
```

· Limitation: Arrays have fixed length

Syntax 8.1: Array Construction

```
new typeName[length]

Example:
new double[10]

Purpose:
To construct an array with a given number of elements
```

Syntax 8.2: Array Element Access

```
arrayReference[index]

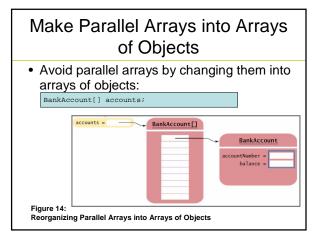
Example:
data[2]

Purpose:
To access an element in an array
```

Self Check

1. What elements does the data array contain after the following statements?

Self Check

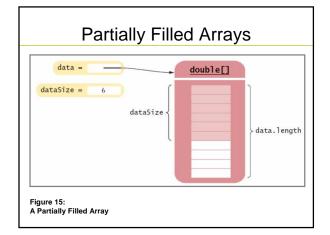

2. What do the following program segments print? Or, if there is an error, describe the error and specify whether it is detected at compile-time or at run-time.

```
    double[] a = new double[10];
System.out.println(a[0]);
    double[] b = new double[10];
System.out.println(b[10]);
    double[] c;
System.out.println(c[0]);
```

Answers

- 1. 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, but not 100
- 2.
 - 1. 0
 - 2. a run-time error: array index out of bounds
 - 3. a compile-time error: c is not initialized

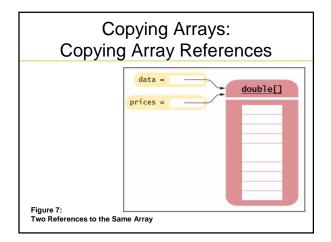
Partially Filled Arrays

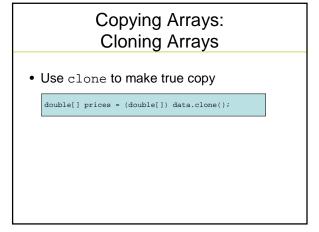

- Array length = maximum number of elements in array
- · Sometimes, array is partially filled
- Need companion variable to keep track of current size
- Uniform naming convention:

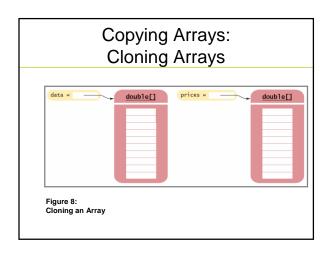
final int DATA_LENGTH = 100;
double[] data = new double[DATA_LENGTH];
int dataSize = 0;

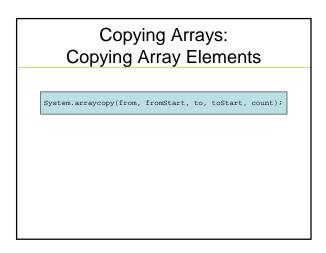
Partially Filled Arrays

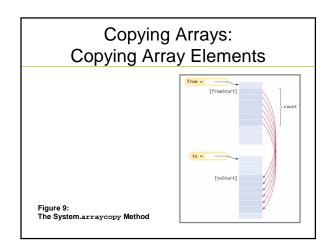
• Update dataSize as array is filled:

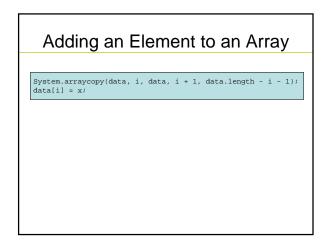

data[dataSize] = x;
dataSize++;

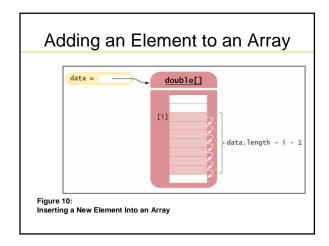


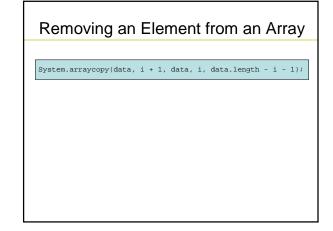

Copying Arrays: Copying Array References

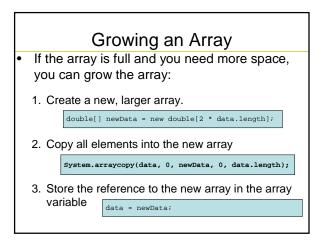

 Copying an array variable yields a second reference to the same array

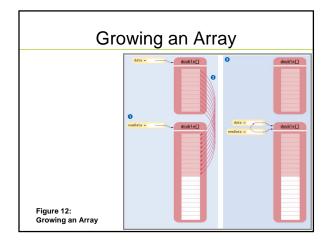

double[] data = new double[10];
// fill array . . .
double[] prices = data;







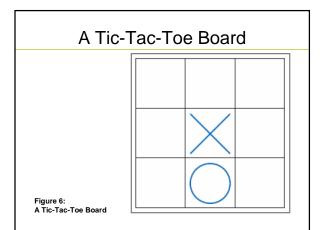




Question Why do we double the length of the array when it has run out of space rather than increasing it by one element?

Answer

Allocating a new array and copying the elements is time-consuming. You wouldn't want to go through the process every time you add an element.


Two-Dimensional Arrays

 When constructing a two-dimensional array, you specify how many rows and columns you need:

```
final int ROWS = 3;
final int COLUMNS = 3;
String[][] board = new String[ROWS][COLUMNS];
```

 You access elements with an index pair a[i][j]

board[i][j] = "x";

Traversing Two-Dimensional Arrays

 It is common to use two nested loops when filling or searching:

for (int i = 0; i < ROWS; i++)
 for (int j = 0; j < COLUMNS; j++)
 board[i][j] = " ";</pre>

Self Check

- 11. How do you declare and initialize a 4-by-4 array of integers?
- 12. How do you count the number of spaces in the tic-tac-toe board?

Answers

- 11. int[][] array = new int[4][4];
- 12. int count = 0;
 for (int i = 0; i < ROWS; i++)
 for (int j = 0; j < COLUMNS; j++)
 if (board[i][j] == ' ') count++;</pre>