
1

Implementing Classes:
Black Boxes & Abstraction

Black Boxes

• A black box magically does its thing 
• Hides its inner workings 

• Encapsulation: the hiding of unimportant 
details 

• What is the right concept for each 
particular black box? 

Continued…

Black Boxes

• Concepts are discovered through abstraction 
• Abstraction: taking away inessential 

features, until only the essence of the 
concept remains 

• In object-oriented programming the black 
boxes from which a program is manufactured 
are called objects

Levels of Abstraction: 
A Real-Life Example

Figure 1:
Levels of Abstraction in 
Automobile Design

• Black boxes in a car: 
transmission, 
electronic control 
module, etc. 

Levels of Abstraction: 
A Real- Life Example

• Users of a car do not need to understand how 
black boxes work

• Interaction of a black box with outside world is 
well-defined
– Drivers interact with car using pedals, buttons, etc. 
– Mechanic can test that engine control module 

sends the right firing signals to the spark plugs 
– For engine control module manufacturers, 

transistors and capacitors are black boxes 
magically produced by an electronics component 
manufacturer Continued…

Levels of Abstraction: 
A Real- Life Example

• Encapsulation leads to efficiency: 
– Mechanic deals only with car components 

(e.g. electronic control module), not with 
sensors and transistors 

– Driver worries only about interaction with car 
(e.g. putting gas in the tank), not about motor 
or electronic control module 



2

Levels of Abstraction: 
Software Design

Figure 2:
Levels of Abstraction in 
Software Design

Levels of Abstraction: 
Software Design

• Old times: computer programs manipulated 
primitive types such as numbers and 
characters 

• Manipulating too many of these primitive 
quantities is too much for programmers and 
leads to errors 

• Solution: Encapsulate routine computations 
to software black boxes

Continued…

Levels of Abstraction: 
Software Design

• Abstraction used to invent higher-level data 
types 

• In object-oriented programming, objects are 
black boxes 

• Encapsulation: Programmer using an object 
knows about its behavior, but not about its 
internal structure 

Continued…

Levels of Abstraction: 
Software Design

• In software design, you can design good 
and bad abstractions with equal facility; 
understanding what makes good design is 
an important part of the education of a 
software engineer 

• First, define behavior of a class; then, 
implement it 

Question?

• Suppose you are working in a company 
that produces personal finance software. 
You are asked to design and implement a 
class for representing bank accounts. 
Who will be the users of your class? 

• Answer: Other programmers who work 
on the personal finance application 

Designing the Public Interface 
of a Class



3

Designing the Public Interface 
of a Class

• Behavior of bank account (abstraction):
– deposit money 
– withdraw money 
– get balance 

Designing the Public Interface 
of a Class: Methods

• Methods of BankAccount class:

• We want to support method calls such as 
the following:

harrysChecking.deposit(2000);
harrysChecking.withdraw(500);
System.out.println(harrysChecking.getBalance());

deposit 
withdraw 
getBalance

Designing the Public Interface 
of a Class: Method Definition

• access specifier (such as public) 
• return type (such as String or void) 
• method name (such as deposit) 
• list of parameters (double amount for 
deposit) 

• method body in { }

Continued…

Designing the Public Interface 
of a Class: Method Definition

public void deposit(double amount) { . . . } 
public void withdraw(double amount) { . . . } 
public double getBalance() { . . . }

Examples

Syntax 3.1: Method Definition

accessSpecifier returnType methodName(parameterType
parameterName, . . .)

{
method body

}

Example:
public void deposit(double amount)
{

. . .
}

Purpose:
To define the behavior of a method

Designing the Public Interface of 
a Class: Constructor Definition

• A constructor initializes the instance 
variables 

• Constructor name = class name

public BankAccount()
{

// body--filled in later
}

Continued…



4

Designing the Public Interface of 
a Class: Constructor Definition

• Constructor body is executed when new object is 
created 

• Statements in constructor body will set the internal 
data of the object that is being constructed 

• All constructors of a class have the same name 
• Compiler can tell constructors apart because they 

take different parameters 

Syntax 3.2: Constructor Definition

accessSpecifier ClassName(parameterType parameterName, . . .)
{

constructor body
}

Example:
public BankAccount(double initialBalance)

{ 
. . . 

}

Purpose:
To define the behavior of a constructor 

BankAccount Public Interface
• The public constructors and methods of a 

class form the public interface of the class. 

public class BankAccount
{

// Constructors
public BankAccount()
{

// body--filled in later
} 
public BankAccount(double initialBalance)
{ 

// body--filled in later
}

// Methods 
public void deposit(double amount)

BankAccount Public Interface

{
// body--filled in later

}

public void withdraw(double amount) 
{ 

// body--filled in later
} 
public double getBalance() 
{ 

// body--filled in later
}
// private fields--filled in later

}

Syntax 3.3: Class Definition
accessSpecifier class ClassName
{ 

constructors
methods
fields

}

Example:
public class BankAccount
{

public BankAccount(double initialBalance) { . . . }
public void deposit(double amount) { . . . }

. . . 
}

Purpose:
To define a class, its public interface, and its implementation details


